使用NLP技术的文本摘要

Balaji N, M. N, D.Lalitha Kumari, Sunil Kumar P, Bhavatarini N, Shikah Rai A
{"title":"使用NLP技术的文本摘要","authors":"Balaji N, M. N, D.Lalitha Kumari, Sunil Kumar P, Bhavatarini N, Shikah Rai A","doi":"10.1109/DISCOVER55800.2022.9974823","DOIUrl":null,"url":null,"abstract":"The text data online is increasing massively; hence, producing a summarized text document is essential. We can create the summarization of multiple text documents either manually or automatically. A manual approach may be tedious and a time-consuming process. The resulting composition may not be accurate when processing lengthy articles; hence the second approach, i.e., the automated summary generation process, is essential. Training machine learning models using these processes makes space and time-efficient summary generation possible. There are two widely used methods to generate summaries, namely, Extractive summarization and abstractive summarization. The extractive technique scans the original document to find the relevant sentences and extracts only that information from it. The abstractive summarization technique interprets the original text before generating the summary. This process is more complicated, and transformer architecture-based pre-trained models are used for comparing the text & developing the outline. This research analysis uses the BBC news dataset to evaluate and compare the results obtained from the machine learning models.","PeriodicalId":264177,"journal":{"name":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Text Summarization using NLP Technique\",\"authors\":\"Balaji N, M. N, D.Lalitha Kumari, Sunil Kumar P, Bhavatarini N, Shikah Rai A\",\"doi\":\"10.1109/DISCOVER55800.2022.9974823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The text data online is increasing massively; hence, producing a summarized text document is essential. We can create the summarization of multiple text documents either manually or automatically. A manual approach may be tedious and a time-consuming process. The resulting composition may not be accurate when processing lengthy articles; hence the second approach, i.e., the automated summary generation process, is essential. Training machine learning models using these processes makes space and time-efficient summary generation possible. There are two widely used methods to generate summaries, namely, Extractive summarization and abstractive summarization. The extractive technique scans the original document to find the relevant sentences and extracts only that information from it. The abstractive summarization technique interprets the original text before generating the summary. This process is more complicated, and transformer architecture-based pre-trained models are used for comparing the text & developing the outline. This research analysis uses the BBC news dataset to evaluate and compare the results obtained from the machine learning models.\",\"PeriodicalId\":264177,\"journal\":{\"name\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCOVER55800.2022.9974823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER55800.2022.9974823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在线文本数据正在大量增加;因此,生成摘要文本文档是必要的。我们可以手动或自动创建多个文本文档的摘要。手动方法可能是乏味且耗时的过程。当处理冗长的文章时,结果组成可能不准确;因此,第二种方法,即自动摘要生成过程,是必不可少的。使用这些过程来训练机器学习模型,使得生成具有空间和时间效率的摘要成为可能。摘要的生成有两种常用的方法,即抽取式摘要和抽象式摘要。提取技术扫描原始文档,找到相关的句子,并从中提取信息。抽象摘要技术是在生成摘要之前对原文进行解释。这个过程比较复杂,使用基于变压器体系结构的预训练模型来比较文本和开发大纲。本研究分析使用BBC新闻数据集来评估和比较机器学习模型获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Summarization using NLP Technique
The text data online is increasing massively; hence, producing a summarized text document is essential. We can create the summarization of multiple text documents either manually or automatically. A manual approach may be tedious and a time-consuming process. The resulting composition may not be accurate when processing lengthy articles; hence the second approach, i.e., the automated summary generation process, is essential. Training machine learning models using these processes makes space and time-efficient summary generation possible. There are two widely used methods to generate summaries, namely, Extractive summarization and abstractive summarization. The extractive technique scans the original document to find the relevant sentences and extracts only that information from it. The abstractive summarization technique interprets the original text before generating the summary. This process is more complicated, and transformer architecture-based pre-trained models are used for comparing the text & developing the outline. This research analysis uses the BBC news dataset to evaluate and compare the results obtained from the machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信