可视化动态基因相互作用,利用拓扑数据分析逆向工程基因调控网络

Miriam Perkins, Karen M. Daniels
{"title":"可视化动态基因相互作用,利用拓扑数据分析逆向工程基因调控网络","authors":"Miriam Perkins, Karen M. Daniels","doi":"10.1109/iV.2017.9","DOIUrl":null,"url":null,"abstract":"This research uses visual analytics to better understand genome dynamics, through a novel application of topological data analysis (TDA) to time series gene expression data. TDA is a model-free approach in which relations are obtained directly from the data. We build the dynamics of the system into the topology, then calculate the influence of potential regulatory genes over the expression of other genes. An interactive 3D visualization is provided to aid in the discovery of functional relationships. These capabilities are contained in a new R package. We apply our technique to synthetic data from the DREAM4 gene regulatory network inference challenge and compare our results to both the challenge submissions and those produced by networkBMA, a Bioconductor package designed to work with time series gene expression data. A case study is presented detailing the use of the visual analytics tool.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Visualizing Dynamic Gene Interactions to Reverse Engineer Gene Regulatory Networks Using Topological Data Analysis\",\"authors\":\"Miriam Perkins, Karen M. Daniels\",\"doi\":\"10.1109/iV.2017.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research uses visual analytics to better understand genome dynamics, through a novel application of topological data analysis (TDA) to time series gene expression data. TDA is a model-free approach in which relations are obtained directly from the data. We build the dynamics of the system into the topology, then calculate the influence of potential regulatory genes over the expression of other genes. An interactive 3D visualization is provided to aid in the discovery of functional relationships. These capabilities are contained in a new R package. We apply our technique to synthetic data from the DREAM4 gene regulatory network inference challenge and compare our results to both the challenge submissions and those produced by networkBMA, a Bioconductor package designed to work with time series gene expression data. A case study is presented detailing the use of the visual analytics tool.\",\"PeriodicalId\":410876,\"journal\":{\"name\":\"2017 21st International Conference Information Visualisation (IV)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 21st International Conference Information Visualisation (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iV.2017.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究通过拓扑数据分析(TDA)对时间序列基因表达数据的新颖应用,使用可视化分析来更好地理解基因组动力学。TDA是一种无模型的方法,直接从数据中获得关系。我们将系统的动力学构建到拓扑结构中,然后计算潜在调控基因对其他基因表达的影响。提供了一个交互式的三维可视化,以帮助发现功能关系。这些功能包含在一个新的R包中。我们将我们的技术应用于DREAM4基因调控网络推理挑战的合成数据,并将我们的结果与提交的挑战和由networkBMA产生的结果进行比较,networkBMA是一个生物导体包,旨在处理时间序列基因表达数据。一个案例研究详细介绍了可视化分析工具的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing Dynamic Gene Interactions to Reverse Engineer Gene Regulatory Networks Using Topological Data Analysis
This research uses visual analytics to better understand genome dynamics, through a novel application of topological data analysis (TDA) to time series gene expression data. TDA is a model-free approach in which relations are obtained directly from the data. We build the dynamics of the system into the topology, then calculate the influence of potential regulatory genes over the expression of other genes. An interactive 3D visualization is provided to aid in the discovery of functional relationships. These capabilities are contained in a new R package. We apply our technique to synthetic data from the DREAM4 gene regulatory network inference challenge and compare our results to both the challenge submissions and those produced by networkBMA, a Bioconductor package designed to work with time series gene expression data. A case study is presented detailing the use of the visual analytics tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信