在有限的目标语言训练数据下使用基于MLP的特征的策略

Y. Qian, Ji Xu, Daniel Povey, Jia Liu
{"title":"在有限的目标语言训练数据下使用基于MLP的特征的策略","authors":"Y. Qian, Ji Xu, Daniel Povey, Jia Liu","doi":"10.1109/ASRU.2011.6163957","DOIUrl":null,"url":null,"abstract":"Recently there has been some interest in the question of how to build LVCSR systems when there is only a limited amount of acoustic training data in the target language, but possibly more plentiful data in other languages. In this paper we investigate approaches using MLP based features. We experiment with two approaches: One is based on Automatic Speech Attribute Transcription (ASAT), in which we train classifiers to learn articulatory features. The other approach uses only the target-language data and relies on combination of multiple MLPs trained on different subsets. After system combination we get large improvements of more than 10% relative versus a conventional baseline. These feature-level approaches may also be combined with other, model-level methods for the multilingual or low-resource scenario.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Strategies for using MLP based features with limited target-language training data\",\"authors\":\"Y. Qian, Ji Xu, Daniel Povey, Jia Liu\",\"doi\":\"10.1109/ASRU.2011.6163957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently there has been some interest in the question of how to build LVCSR systems when there is only a limited amount of acoustic training data in the target language, but possibly more plentiful data in other languages. In this paper we investigate approaches using MLP based features. We experiment with two approaches: One is based on Automatic Speech Attribute Transcription (ASAT), in which we train classifiers to learn articulatory features. The other approach uses only the target-language data and relies on combination of multiple MLPs trained on different subsets. After system combination we get large improvements of more than 10% relative versus a conventional baseline. These feature-level approaches may also be combined with other, model-level methods for the multilingual or low-resource scenario.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

最近,当目标语言的声学训练数据数量有限,但其他语言的数据可能更丰富时,如何构建LVCSR系统的问题引起了一些兴趣。在本文中,我们研究了基于MLP特征的方法。我们尝试了两种方法:一种是基于自动语音属性转录(ASAT),其中我们训练分类器来学习发音特征。另一种方法仅使用目标语言数据,并依赖于在不同子集上训练的多个mlp的组合。在系统组合后,相对于传统基线,我们得到了超过10%的大幅度改进。对于多语言或低资源场景,这些特征级方法也可以与其他模型级方法相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies for using MLP based features with limited target-language training data
Recently there has been some interest in the question of how to build LVCSR systems when there is only a limited amount of acoustic training data in the target language, but possibly more plentiful data in other languages. In this paper we investigate approaches using MLP based features. We experiment with two approaches: One is based on Automatic Speech Attribute Transcription (ASAT), in which we train classifiers to learn articulatory features. The other approach uses only the target-language data and relies on combination of multiple MLPs trained on different subsets. After system combination we get large improvements of more than 10% relative versus a conventional baseline. These feature-level approaches may also be combined with other, model-level methods for the multilingual or low-resource scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信