车辆加速度强度对双质量飞轮元件及传动载荷的影响

Bohdan Kindratskyy, R. Litvin, O. Osmak
{"title":"车辆加速度强度对双质量飞轮元件及传动载荷的影响","authors":"Bohdan Kindratskyy, R. Litvin, O. Osmak","doi":"10.23939/tt2022.01.065","DOIUrl":null,"url":null,"abstract":"Modern high-torque low-speed internal combustion engines (ICEs) generate torsional vibrations close in disturbance frequency to gearboxes natural oscillation frequencies. Effective absorption of such oscillations requires a new torsional vibration damper between the internal combustion engine and gearbox design, which is implemented in the form of a dual-mass flywheel (DMF). One of the main reasons for DMF failure is its spring components destruction. The article develops mathematical and simulation (in MATLAB Simulink environment) model of a car with DMF in the period of starting, which takes into account the dependence of torque and power of the internal combustion engine on the number of the crankshaft revolutions and uneven rotation, car inertial and stiffness parameters, road resistance. It is established that when the car starts in first gear, the maximum load on spring components of DMF and transmission occurs at the initial moment of clutch engagement and exceeds the maximum effective torque of the internal combustion engine 1.6 times, has a pronounced oscillatory character and stabilizes as the car accelerates. With smooth acceleration of a car, when torque of internal combustion engine reaches, but does not exceed its maximum value of 250 N‧m, elastic moment in transmission components is stabilized at 230 N‧m. During intensive acceleration and transition through the extremum on torque curve of internal combustion engine on number of crankshaft revolution, the maximum DMF spring components and transmission load initially doesn’t change significantly, but reduces the duration of oscillatory processes and elastic moment of 160 N·m after attenuation of oscillations. A similar nature of stress changes is observed in the elastic links of DMF, which eventually leads to their fatigue failure and DMF failure. To increase a DMF service life, it is advisable to accelerate a car when moving intensively, bringing a number of revolutions to a value that is located at the extreme of torque of internal combustion engine on its performance characteristic, followed by switching to the next gear.","PeriodicalId":343801,"journal":{"name":"Transport technologies","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of vehicle acceleration intensity on dual-mass flywheel elements and transmission load\",\"authors\":\"Bohdan Kindratskyy, R. Litvin, O. Osmak\",\"doi\":\"10.23939/tt2022.01.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern high-torque low-speed internal combustion engines (ICEs) generate torsional vibrations close in disturbance frequency to gearboxes natural oscillation frequencies. Effective absorption of such oscillations requires a new torsional vibration damper between the internal combustion engine and gearbox design, which is implemented in the form of a dual-mass flywheel (DMF). One of the main reasons for DMF failure is its spring components destruction. The article develops mathematical and simulation (in MATLAB Simulink environment) model of a car with DMF in the period of starting, which takes into account the dependence of torque and power of the internal combustion engine on the number of the crankshaft revolutions and uneven rotation, car inertial and stiffness parameters, road resistance. It is established that when the car starts in first gear, the maximum load on spring components of DMF and transmission occurs at the initial moment of clutch engagement and exceeds the maximum effective torque of the internal combustion engine 1.6 times, has a pronounced oscillatory character and stabilizes as the car accelerates. With smooth acceleration of a car, when torque of internal combustion engine reaches, but does not exceed its maximum value of 250 N‧m, elastic moment in transmission components is stabilized at 230 N‧m. During intensive acceleration and transition through the extremum on torque curve of internal combustion engine on number of crankshaft revolution, the maximum DMF spring components and transmission load initially doesn’t change significantly, but reduces the duration of oscillatory processes and elastic moment of 160 N·m after attenuation of oscillations. A similar nature of stress changes is observed in the elastic links of DMF, which eventually leads to their fatigue failure and DMF failure. To increase a DMF service life, it is advisable to accelerate a car when moving intensively, bringing a number of revolutions to a value that is located at the extreme of torque of internal combustion engine on its performance characteristic, followed by switching to the next gear.\",\"PeriodicalId\":343801,\"journal\":{\"name\":\"Transport technologies\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/tt2022.01.065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/tt2022.01.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代大扭矩低速内燃机产生的扭振干扰频率与齿轮箱固有振动频率接近。有效地吸收这种振动需要在内燃机和变速箱之间设计一种新的扭转减振器,这种减振器以双质量飞轮(DMF)的形式实现。DMF失效的主要原因之一是弹簧元件的破坏。本文在MATLAB Simulink环境下,建立了一辆具有DMF的汽车起动阶段的数学和仿真模型,该模型考虑了内燃机转矩和功率对曲轴转数和不均匀旋转数、汽车惯性和刚度参数、道路阻力的依赖关系。研究结果表明,汽车在1档起动时,DMF和变速器弹簧元件的最大载荷出现在离合器接合初始时刻,超过内燃机最大有效扭矩的1.6倍,具有明显的振荡特征,并在汽车加速过程中趋于稳定。汽车平稳加速时,当内燃机转矩达到但不超过其最大值250 N·m时,传动元件的弹性力矩稳定在230 N·m。在内燃机曲轴转数扭矩曲线极值的剧烈加速和过渡过程中,DMF最大弹簧分量和传动载荷最初变化不明显,但振荡衰减后振荡过程持续时间和弹性力矩减小了160 N·m。在DMF的弹性环节中也观察到类似的应力变化性质,最终导致其疲劳破坏和DMF破坏。为了延长DMF的使用寿命,建议在车辆密集行驶时进行加速,使转数达到内燃机在其性能特性上的扭矩极值,然后切换到下一个档位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of vehicle acceleration intensity on dual-mass flywheel elements and transmission load
Modern high-torque low-speed internal combustion engines (ICEs) generate torsional vibrations close in disturbance frequency to gearboxes natural oscillation frequencies. Effective absorption of such oscillations requires a new torsional vibration damper between the internal combustion engine and gearbox design, which is implemented in the form of a dual-mass flywheel (DMF). One of the main reasons for DMF failure is its spring components destruction. The article develops mathematical and simulation (in MATLAB Simulink environment) model of a car with DMF in the period of starting, which takes into account the dependence of torque and power of the internal combustion engine on the number of the crankshaft revolutions and uneven rotation, car inertial and stiffness parameters, road resistance. It is established that when the car starts in first gear, the maximum load on spring components of DMF and transmission occurs at the initial moment of clutch engagement and exceeds the maximum effective torque of the internal combustion engine 1.6 times, has a pronounced oscillatory character and stabilizes as the car accelerates. With smooth acceleration of a car, when torque of internal combustion engine reaches, but does not exceed its maximum value of 250 N‧m, elastic moment in transmission components is stabilized at 230 N‧m. During intensive acceleration and transition through the extremum on torque curve of internal combustion engine on number of crankshaft revolution, the maximum DMF spring components and transmission load initially doesn’t change significantly, but reduces the duration of oscillatory processes and elastic moment of 160 N·m after attenuation of oscillations. A similar nature of stress changes is observed in the elastic links of DMF, which eventually leads to their fatigue failure and DMF failure. To increase a DMF service life, it is advisable to accelerate a car when moving intensively, bringing a number of revolutions to a value that is located at the extreme of torque of internal combustion engine on its performance characteristic, followed by switching to the next gear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信