{"title":"极端温度下光学化学传感薄膜的研究进展与展望","authors":"P. Ohodnicki","doi":"10.1109/FIIW.2012.6378339","DOIUrl":null,"url":null,"abstract":"Opportunities exist for energy efficiency improvement and greenhouse gas emission reduction in fossil energy based electrical power generation through deployment of embedded sensors operating at extreme temperatures and under harsh conditions. Despite inherent advantages of optical based sensors, published literature discussing optical sensing materials is limited for temperatures of operation greater than 500°C. A clear need exists for additional fundamental and applied research efforts. Published literature discussing sensor materials for high temperature optical chemical sensing applications are reviewed and research opportunities / needs are highlighted.","PeriodicalId":170653,"journal":{"name":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A review and perspective: Thin films for optical based chemical sensing at extreme temperatures\",\"authors\":\"P. Ohodnicki\",\"doi\":\"10.1109/FIIW.2012.6378339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opportunities exist for energy efficiency improvement and greenhouse gas emission reduction in fossil energy based electrical power generation through deployment of embedded sensors operating at extreme temperatures and under harsh conditions. Despite inherent advantages of optical based sensors, published literature discussing optical sensing materials is limited for temperatures of operation greater than 500°C. A clear need exists for additional fundamental and applied research efforts. Published literature discussing sensor materials for high temperature optical chemical sensing applications are reviewed and research opportunities / needs are highlighted.\",\"PeriodicalId\":170653,\"journal\":{\"name\":\"2012 Future of Instrumentation International Workshop (FIIW) Proceedings\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Future of Instrumentation International Workshop (FIIW) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIIW.2012.6378339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Future of Instrumentation International Workshop (FIIW) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIIW.2012.6378339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review and perspective: Thin films for optical based chemical sensing at extreme temperatures
Opportunities exist for energy efficiency improvement and greenhouse gas emission reduction in fossil energy based electrical power generation through deployment of embedded sensors operating at extreme temperatures and under harsh conditions. Despite inherent advantages of optical based sensors, published literature discussing optical sensing materials is limited for temperatures of operation greater than 500°C. A clear need exists for additional fundamental and applied research efforts. Published literature discussing sensor materials for high temperature optical chemical sensing applications are reviewed and research opportunities / needs are highlighted.