引入高阶统计量估计混沌时间序列的维数

P. Flandrin, O. Michel
{"title":"引入高阶统计量估计混沌时间序列的维数","authors":"P. Flandrin, O. Michel","doi":"10.1109/SSAP.1992.246823","DOIUrl":null,"url":null,"abstract":"Given an irregular time series, an important issue is to determine whether it stems from a stochastic or a chaotic (i.e. deterministic with few degrees of freedom) system. This is generally achieved by studying the geometry of a reconstructed attractor, although it is known that some purely stochastic processes can be associated with low-dimension attractors. It is shown that an effective estimation of the number of degrees of freedom can be obtained better through a (local) independent component analysis.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction of higher order statistics for estimating the dimension of chaotic time series\",\"authors\":\"P. Flandrin, O. Michel\",\"doi\":\"10.1109/SSAP.1992.246823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an irregular time series, an important issue is to determine whether it stems from a stochastic or a chaotic (i.e. deterministic with few degrees of freedom) system. This is generally achieved by studying the geometry of a reconstructed attractor, although it is known that some purely stochastic processes can be associated with low-dimension attractors. It is shown that an effective estimation of the number of degrees of freedom can be obtained better through a (local) independent component analysis.<<ETX>>\",\"PeriodicalId\":309407,\"journal\":{\"name\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1992.246823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个不规则的时间序列,一个重要的问题是确定它是来自随机还是混沌(即具有几个自由度的确定性)系统。这通常是通过研究重建吸引子的几何来实现的,尽管我们知道一些纯随机过程可以与低维吸引子相关联。结果表明,通过(局部)独立分量分析可以更好地有效估计自由度数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction of higher order statistics for estimating the dimension of chaotic time series
Given an irregular time series, an important issue is to determine whether it stems from a stochastic or a chaotic (i.e. deterministic with few degrees of freedom) system. This is generally achieved by studying the geometry of a reconstructed attractor, although it is known that some purely stochastic processes can be associated with low-dimension attractors. It is shown that an effective estimation of the number of degrees of freedom can be obtained better through a (local) independent component analysis.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信