{"title":"加载频率对亚微米厚薄膜与基体间疲劳裂纹扩展的影响","authors":"D. Truong, H. Hirakata, T. Kitamura","doi":"10.1299/JSMEA.49.370","DOIUrl":null,"url":null,"abstract":"The crack growth along the interface between a submicron-thick film (Cu) and a substrate (Si) under fatigue is experimentally investigated at the load-frequencies of 0.1Hz and 1Hz in a laboratory environment (45 ±5%RH). A modified four-point bend specimen, which has only one interface crack to facilitate the control of crack growth, is used for the tests. The results reveal that the clear interface crack between Cu and Si grows under the cyclic load. The crack growth rate per cycle, da/dN, is governed by the stress intensity factor range, ΔKi, at each frequency and the sigmoidal relationship consisting of three stages are observed in the da/dN-ΔKi curve; the threshold, the stable growth and the critical growth. da/dNgreatly increases as the frequency decreases in the stable growth region. The crack growth rate per time, da/dt, shows a good correlation with the maximum stress intensity factor, Kimax, independently of the loading frequency. This indicates that the environmental effect due to humidity in air plays a dominant role on the crack growth.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Effect of Loading Frequency on Fatigue Crack Growth between a Submicron-Thick Film and a Substrate\",\"authors\":\"D. Truong, H. Hirakata, T. Kitamura\",\"doi\":\"10.1299/JSMEA.49.370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crack growth along the interface between a submicron-thick film (Cu) and a substrate (Si) under fatigue is experimentally investigated at the load-frequencies of 0.1Hz and 1Hz in a laboratory environment (45 ±5%RH). A modified four-point bend specimen, which has only one interface crack to facilitate the control of crack growth, is used for the tests. The results reveal that the clear interface crack between Cu and Si grows under the cyclic load. The crack growth rate per cycle, da/dN, is governed by the stress intensity factor range, ΔKi, at each frequency and the sigmoidal relationship consisting of three stages are observed in the da/dN-ΔKi curve; the threshold, the stable growth and the critical growth. da/dNgreatly increases as the frequency decreases in the stable growth region. The crack growth rate per time, da/dt, shows a good correlation with the maximum stress intensity factor, Kimax, independently of the loading frequency. This indicates that the environmental effect due to humidity in air plays a dominant role on the crack growth.\",\"PeriodicalId\":170519,\"journal\":{\"name\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA.49.370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Loading Frequency on Fatigue Crack Growth between a Submicron-Thick Film and a Substrate
The crack growth along the interface between a submicron-thick film (Cu) and a substrate (Si) under fatigue is experimentally investigated at the load-frequencies of 0.1Hz and 1Hz in a laboratory environment (45 ±5%RH). A modified four-point bend specimen, which has only one interface crack to facilitate the control of crack growth, is used for the tests. The results reveal that the clear interface crack between Cu and Si grows under the cyclic load. The crack growth rate per cycle, da/dN, is governed by the stress intensity factor range, ΔKi, at each frequency and the sigmoidal relationship consisting of three stages are observed in the da/dN-ΔKi curve; the threshold, the stable growth and the critical growth. da/dNgreatly increases as the frequency decreases in the stable growth region. The crack growth rate per time, da/dt, shows a good correlation with the maximum stress intensity factor, Kimax, independently of the loading frequency. This indicates that the environmental effect due to humidity in air plays a dominant role on the crack growth.