结合粒子滤波和k均值的多鼠跟踪

W. Gonçalves, J. Monteiro, J. Silva, Bruno Brandoli Machado, H. Pistori, Valguima Odakura
{"title":"结合粒子滤波和k均值的多鼠跟踪","authors":"W. Gonçalves, J. Monteiro, J. Silva, Bruno Brandoli Machado, H. Pistori, Valguima Odakura","doi":"10.1109/SIBGRAPI.2007.39","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to multiple objects tracking that combines particle filters and k-means. The approach has been tested under an important real world situation, related to pharmacological development, which has also proved to serve as an interesting ground-truth dataset provider for the evaluation of tracking algorithms. The obtained results are then compared to other models. The promising results of these experiments are presented.","PeriodicalId":434632,"journal":{"name":"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Multiple Mice Tracking using a Combination of Particle Filter and K-Means\",\"authors\":\"W. Gonçalves, J. Monteiro, J. Silva, Bruno Brandoli Machado, H. Pistori, Valguima Odakura\",\"doi\":\"10.1109/SIBGRAPI.2007.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach to multiple objects tracking that combines particle filters and k-means. The approach has been tested under an important real world situation, related to pharmacological development, which has also proved to serve as an interesting ground-truth dataset provider for the evaluation of tracking algorithms. The obtained results are then compared to other models. The promising results of these experiments are presented.\",\"PeriodicalId\":434632,\"journal\":{\"name\":\"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRAPI.2007.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2007.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

提出了一种结合粒子滤波和k均值的多目标跟踪方法。该方法已经在一个重要的现实世界的情况下进行了测试,与药理学发展有关,这也被证明是一个有趣的基础事实数据集提供者,用于评估跟踪算法。然后将得到的结果与其他模型进行比较。给出了这些实验的令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Mice Tracking using a Combination of Particle Filter and K-Means
This paper presents a new approach to multiple objects tracking that combines particle filters and k-means. The approach has been tested under an important real world situation, related to pharmacological development, which has also proved to serve as an interesting ground-truth dataset provider for the evaluation of tracking algorithms. The obtained results are then compared to other models. The promising results of these experiments are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信