一种新型实时语义辅助激光雷达测程与制图系统

Fei Wang, Zichen Wang, Fei Yan, Hong Gu, Yan Zhuang
{"title":"一种新型实时语义辅助激光雷达测程与制图系统","authors":"Fei Wang, Zichen Wang, Fei Yan, Hong Gu, Yan Zhuang","doi":"10.1109/ICICIP47338.2019.9012188","DOIUrl":null,"url":null,"abstract":"Recently, rich semantic information has proven to be an enabling factor for a wide variety of applications in mobile robots. In this paper, we explore the integration of semantics into lidar odometry and mapping approaches and present a novel real-time semantic-assisted system. To this end, a sparse 3D-CNN model is designed to perform per-frame semantic segmentation of lidar points. Transformations are then estimated by jointly minimizing the geometric and semantic distances between correspondences. At last, new points are transformed into the world coordinate system and used to update predicted labels in the global semantic map. Experiments show that our system has a better performance in pose error compared with the geometry-based method.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Real-time Semantic-Assisted Lidar Odometry and Mapping System\",\"authors\":\"Fei Wang, Zichen Wang, Fei Yan, Hong Gu, Yan Zhuang\",\"doi\":\"10.1109/ICICIP47338.2019.9012188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, rich semantic information has proven to be an enabling factor for a wide variety of applications in mobile robots. In this paper, we explore the integration of semantics into lidar odometry and mapping approaches and present a novel real-time semantic-assisted system. To this end, a sparse 3D-CNN model is designed to perform per-frame semantic segmentation of lidar points. Transformations are then estimated by jointly minimizing the geometric and semantic distances between correspondences. At last, new points are transformed into the world coordinate system and used to update predicted labels in the global semantic map. Experiments show that our system has a better performance in pose error compared with the geometry-based method.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,丰富的语义信息已被证明是移动机器人广泛应用的有利因素。在本文中,我们探索将语义整合到激光雷达测程和测绘方法中,并提出了一种新的实时语义辅助系统。为此,设计了一个稀疏的3D-CNN模型,对激光雷达点进行逐帧语义分割。然后通过联合最小化对应之间的几何和语义距离来估计转换。最后,将新点转换为世界坐标系统,用于更新全局语义图中的预测标签。实验表明,与基于几何的方法相比,该系统在位姿误差方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Real-time Semantic-Assisted Lidar Odometry and Mapping System
Recently, rich semantic information has proven to be an enabling factor for a wide variety of applications in mobile robots. In this paper, we explore the integration of semantics into lidar odometry and mapping approaches and present a novel real-time semantic-assisted system. To this end, a sparse 3D-CNN model is designed to perform per-frame semantic segmentation of lidar points. Transformations are then estimated by jointly minimizing the geometric and semantic distances between correspondences. At last, new points are transformed into the world coordinate system and used to update predicted labels in the global semantic map. Experiments show that our system has a better performance in pose error compared with the geometry-based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信