具有节能学习功能的28nm可配置异步SNN加速器

Jilin Zhang, Mingxuan Liang, Jinsong Wei, Shaojun Wei, Hong Chen
{"title":"具有节能学习功能的28nm可配置异步SNN加速器","authors":"Jilin Zhang, Mingxuan Liang, Jinsong Wei, Shaojun Wei, Hong Chen","doi":"10.1109/ASYNC48570.2021.00013","DOIUrl":null,"url":null,"abstract":"In this paper, we put forward an energy-efficient configurable asynchronous SNN accelerator for energy-constrained applications, which includes 256 neurons and 131K synapses with 8-bit fixed point weight. To achieve high energy efficiency and on-chip learning ability, we propose a sparse target propagation (S-TP) algorithm and design the accelerator with Click-based bundled-data asynchronous circuits. The SNN accelerator is implemented in 28nm CMOS process, and the post place and router (post-PAR) simulation results indicate that the SNN accelerator achieves on-chip learning with inference power efficiency of 3.97 pJ/SOP and 95.7% classification accuracy on NMNIST test dataset, which outperforms prior neuromorphic on-chip learning systems.","PeriodicalId":314811,"journal":{"name":"2021 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A 28nm Configurable Asynchronous SNN Accelerator with Energy-Efficient Learning\",\"authors\":\"Jilin Zhang, Mingxuan Liang, Jinsong Wei, Shaojun Wei, Hong Chen\",\"doi\":\"10.1109/ASYNC48570.2021.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we put forward an energy-efficient configurable asynchronous SNN accelerator for energy-constrained applications, which includes 256 neurons and 131K synapses with 8-bit fixed point weight. To achieve high energy efficiency and on-chip learning ability, we propose a sparse target propagation (S-TP) algorithm and design the accelerator with Click-based bundled-data asynchronous circuits. The SNN accelerator is implemented in 28nm CMOS process, and the post place and router (post-PAR) simulation results indicate that the SNN accelerator achieves on-chip learning with inference power efficiency of 3.97 pJ/SOP and 95.7% classification accuracy on NMNIST test dataset, which outperforms prior neuromorphic on-chip learning systems.\",\"PeriodicalId\":314811,\"journal\":{\"name\":\"2021 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC48570.2021.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 27th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC48570.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种节能的可配置异步SNN加速器,该加速器包含256个神经元和131K突触,具有8位固定点权。为了实现高能效和片上学习能力,我们提出了一种稀疏目标传播(S-TP)算法,并设计了基于点击的捆绑数据异步电路。在28nm CMOS工艺上实现了SNN加速器,经过post- place和router (post- par)仿真结果表明,SNN加速器在NMNIST测试数据集上实现了片上学习,推理效率为3.97 pJ/SOP,分类准确率为95.7%,优于现有的神经形态片上学习系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 28nm Configurable Asynchronous SNN Accelerator with Energy-Efficient Learning
In this paper, we put forward an energy-efficient configurable asynchronous SNN accelerator for energy-constrained applications, which includes 256 neurons and 131K synapses with 8-bit fixed point weight. To achieve high energy efficiency and on-chip learning ability, we propose a sparse target propagation (S-TP) algorithm and design the accelerator with Click-based bundled-data asynchronous circuits. The SNN accelerator is implemented in 28nm CMOS process, and the post place and router (post-PAR) simulation results indicate that the SNN accelerator achieves on-chip learning with inference power efficiency of 3.97 pJ/SOP and 95.7% classification accuracy on NMNIST test dataset, which outperforms prior neuromorphic on-chip learning systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信