注释表

H. Martz, C. Logan, D. Schneberk, Peter J. Shull
{"title":"注释表","authors":"H. Martz, C. Logan, D. Schneberk, Peter J. Shull","doi":"10.1201/9781315375199-20","DOIUrl":null,"url":null,"abstract":"Table 1: Notations and their meanings Notation Meaning C = {C1, C2, . . . , Cp} Classification problem with p class labels, Ck; (1≤ k ≤ p and 2≤ p) I = {I1, I2, . . . , In} Testing instance, It; (1 ≤ t ≤ n) rt = 〈R t , R 2 t , . . . , R p t 〉 Ground truth one-hot vector for It D = {D1, D2, . . . , DT } Stream training dataset,Di; (1 ≤ i ≤ T )Di ⊆ Dj if i < j L = {L1, L2, . . . , LT } Trained learners of a model forD, Li; (1 ≤ i ≤ T ) Ŷ = {Ŷ1, Ŷ2, . . . , ŶT } Prediction for I by L, Ŷi; (1 ≤ i ≤ T ) ξ = {SL1, SL2, . . . , SLm} Ensemble ofm component single learners, SLj ; (1 ≤ j ≤ m and 2 ≤ m) ξ̃ = {S̃L1, S̃L2, . . . , S̃Lm} The copy of ξ, ensemble ofm component single learners, S̃Lj ; (1 ≤ j ≤ m and 2 ≤ m) stj = 〈S tj , S 2 tj , . . . , S p tj〉 Prediction vector for It by SLj ; ∑p k=1 S k tj = 1 s̃tj = 〈S̃ tj , S̃ 2 tj , . . . , S̃ p tj〉 Prediction vector for It by S̃Lj ; ∑p k=1 S̃ k tj = 1 ot = 〈O t , O 2 t , . . . , O p t 〉 Centroid-point vector for It by ξ,O k t ; (1 ≤ k ≤ p) õt = 〈Õ t , Õ 2 t , . . . , Õ p t 〉 Centroid-point vector for It by ξ̃, Õ k t ; (1 ≤ k ≤ p) w = 〈W1,W2, . . . ,Wm〉 Weight vector for ξ,Wj ; (1 ≤ j ≤ m) w̃ = 〈W̃1, W̃2, . . . , W̃m〉 Weight vector for ξ̃, W̃j ; (1 ≤ j ≤ m) ζ = f(w, ξ) Combination learner for ξ and w ζ̃ = f(w̃, ξ̃) Combination learner for ξ̃ and w̃","PeriodicalId":173352,"journal":{"name":"Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"List of notations\",\"authors\":\"H. Martz, C. Logan, D. Schneberk, Peter J. Shull\",\"doi\":\"10.1201/9781315375199-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Table 1: Notations and their meanings Notation Meaning C = {C1, C2, . . . , Cp} Classification problem with p class labels, Ck; (1≤ k ≤ p and 2≤ p) I = {I1, I2, . . . , In} Testing instance, It; (1 ≤ t ≤ n) rt = 〈R t , R 2 t , . . . , R p t 〉 Ground truth one-hot vector for It D = {D1, D2, . . . , DT } Stream training dataset,Di; (1 ≤ i ≤ T )Di ⊆ Dj if i < j L = {L1, L2, . . . , LT } Trained learners of a model forD, Li; (1 ≤ i ≤ T ) Ŷ = {Ŷ1, Ŷ2, . . . , ŶT } Prediction for I by L, Ŷi; (1 ≤ i ≤ T ) ξ = {SL1, SL2, . . . , SLm} Ensemble ofm component single learners, SLj ; (1 ≤ j ≤ m and 2 ≤ m) ξ̃ = {S̃L1, S̃L2, . . . , S̃Lm} The copy of ξ, ensemble ofm component single learners, S̃Lj ; (1 ≤ j ≤ m and 2 ≤ m) stj = 〈S tj , S 2 tj , . . . , S p tj〉 Prediction vector for It by SLj ; ∑p k=1 S k tj = 1 s̃tj = 〈S̃ tj , S̃ 2 tj , . . . , S̃ p tj〉 Prediction vector for It by S̃Lj ; ∑p k=1 S̃ k tj = 1 ot = 〈O t , O 2 t , . . . , O p t 〉 Centroid-point vector for It by ξ,O k t ; (1 ≤ k ≤ p) õt = 〈Õ t , Õ 2 t , . . . , Õ p t 〉 Centroid-point vector for It by ξ̃, Õ k t ; (1 ≤ k ≤ p) w = 〈W1,W2, . . . ,Wm〉 Weight vector for ξ,Wj ; (1 ≤ j ≤ m) w̃ = 〈W̃1, W̃2, . . . , W̃m〉 Weight vector for ξ̃, W̃j ; (1 ≤ j ≤ m) ζ = f(w, ξ) Combination learner for ξ and w ζ̃ = f(w̃, ξ̃) Combination learner for ξ̃ and w̃\",\"PeriodicalId\":173352,\"journal\":{\"name\":\"Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315375199-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315375199-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表1:符号及其含义符号含义C = {C1, C2,…p类标签的分类问题,Ck;(1≤k≤p, 2≤p) I = {I1, I2,…在}测试实例中,它;(1≤t≤n) rt = < rt, r2t,…D = {D1, D2,…流训练数据集,Di;(1≤i≤T) i≤j L = {L1, L2,…, LT}训练了一辆福特模型的学习者,Li;(1≤i≤T) Ŷ = {Ŷ1, Ŷ2,…L对I的预测,Ŷi;(1≤i≤T) ξ = {SL1, SL2,…m组件单学习器集成,SLj;(1≤j≤m, 2≤m) ξ ω = {S ω L1, S ω L2,…ξ的拷贝,m个分量单学习器的集合,S [Lj];(1≤j≤m, 2≤m) stj = < S tj, S 2tj,…, S p tj > SLj预测向量;∑p k=1 S k tj =1 S n n tj = < S n n tj, S n 2 tj,…, S / p tj > S / Lj对它的预测向量;∑p k=1 S k tj =1 t = < 0 t, 0 2 t,…,O p t >它的质心点向量通过ξ,O k t;(1≤k≤p) õt = < Õ t, Õ 2 t,…, Õ p t >它的质心点矢量通过ξ ω, Õ k t;(1≤k≤p) w = < W1,W2,…,Wm > ξ的权向量,Wj;(1≤j≤m) w ω = < w ω 1, w ω 2,…, W ^ m >权向量,W ^ j;(1≤j≤m) ζ = f(w, ξ)对于ξ和w ζ = f(w, ξ)对于ξ和w的组合学习器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
List of notations
Table 1: Notations and their meanings Notation Meaning C = {C1, C2, . . . , Cp} Classification problem with p class labels, Ck; (1≤ k ≤ p and 2≤ p) I = {I1, I2, . . . , In} Testing instance, It; (1 ≤ t ≤ n) rt = 〈R t , R 2 t , . . . , R p t 〉 Ground truth one-hot vector for It D = {D1, D2, . . . , DT } Stream training dataset,Di; (1 ≤ i ≤ T )Di ⊆ Dj if i < j L = {L1, L2, . . . , LT } Trained learners of a model forD, Li; (1 ≤ i ≤ T ) Ŷ = {Ŷ1, Ŷ2, . . . , ŶT } Prediction for I by L, Ŷi; (1 ≤ i ≤ T ) ξ = {SL1, SL2, . . . , SLm} Ensemble ofm component single learners, SLj ; (1 ≤ j ≤ m and 2 ≤ m) ξ̃ = {S̃L1, S̃L2, . . . , S̃Lm} The copy of ξ, ensemble ofm component single learners, S̃Lj ; (1 ≤ j ≤ m and 2 ≤ m) stj = 〈S tj , S 2 tj , . . . , S p tj〉 Prediction vector for It by SLj ; ∑p k=1 S k tj = 1 s̃tj = 〈S̃ tj , S̃ 2 tj , . . . , S̃ p tj〉 Prediction vector for It by S̃Lj ; ∑p k=1 S̃ k tj = 1 ot = 〈O t , O 2 t , . . . , O p t 〉 Centroid-point vector for It by ξ,O k t ; (1 ≤ k ≤ p) õt = 〈Õ t , Õ 2 t , . . . , Õ p t 〉 Centroid-point vector for It by ξ̃, Õ k t ; (1 ≤ k ≤ p) w = 〈W1,W2, . . . ,Wm〉 Weight vector for ξ,Wj ; (1 ≤ j ≤ m) w̃ = 〈W̃1, W̃2, . . . , W̃m〉 Weight vector for ξ̃, W̃j ; (1 ≤ j ≤ m) ζ = f(w, ξ) Combination learner for ξ and w ζ̃ = f(w̃, ξ̃) Combination learner for ξ̃ and w̃
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信