HEMT的神经网络表征

K. Shirakawa, N. Okubo
{"title":"HEMT的神经网络表征","authors":"K. Shirakawa, N. Okubo","doi":"10.1109/EUMA.1996.337592","DOIUrl":null,"url":null,"abstract":"We report a new approach to describe the bias-dependent behavior of a HEMT by using a neural network, whose inputs are gate-to-source (Vgs) and gate-to-drain bias voltages (Vds). Using a conventional small-signal equivalent circuit, we characterized the HEMT's S-parameters measured at various bias settings, and obtained the bias-dependent values of the equivalent circuit elements. Through experiments, we found that a 5-layered neural network (composed of 28 neurons) is adequate to represent 7 bias-dependent intrinsic elements simultaneously. A \"well-trained\" neural network shows excellent accuracy.","PeriodicalId":219101,"journal":{"name":"1996 26th European Microwave Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A neural network characterization of a HEMT\",\"authors\":\"K. Shirakawa, N. Okubo\",\"doi\":\"10.1109/EUMA.1996.337592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a new approach to describe the bias-dependent behavior of a HEMT by using a neural network, whose inputs are gate-to-source (Vgs) and gate-to-drain bias voltages (Vds). Using a conventional small-signal equivalent circuit, we characterized the HEMT's S-parameters measured at various bias settings, and obtained the bias-dependent values of the equivalent circuit elements. Through experiments, we found that a 5-layered neural network (composed of 28 neurons) is adequate to represent 7 bias-dependent intrinsic elements simultaneously. A \\\"well-trained\\\" neural network shows excellent accuracy.\",\"PeriodicalId\":219101,\"journal\":{\"name\":\"1996 26th European Microwave Conference\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 26th European Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUMA.1996.337592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 26th European Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUMA.1996.337592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们报告了一种新的方法,通过使用神经网络来描述HEMT的偏置依赖行为,该神经网络的输入是门源(Vgs)和门漏(Vds)偏置电压。利用传统的小信号等效电路,我们表征了在不同偏置设置下测量的HEMT s参数,并获得了等效电路元件的偏置相关值。通过实验,我们发现一个5层神经网络(由28个神经元组成)足以同时表示7个依赖于偏差的固有元素。“训练有素”的神经网络显示出优异的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network characterization of a HEMT
We report a new approach to describe the bias-dependent behavior of a HEMT by using a neural network, whose inputs are gate-to-source (Vgs) and gate-to-drain bias voltages (Vds). Using a conventional small-signal equivalent circuit, we characterized the HEMT's S-parameters measured at various bias settings, and obtained the bias-dependent values of the equivalent circuit elements. Through experiments, we found that a 5-layered neural network (composed of 28 neurons) is adequate to represent 7 bias-dependent intrinsic elements simultaneously. A "well-trained" neural network shows excellent accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信