基于MRF和DP的镜面重建

K. RavindraRedddy, A. Namboodiri
{"title":"基于MRF和DP的镜面重建","authors":"K. RavindraRedddy, A. Namboodiri","doi":"10.1109/NCVPRIPG.2013.6776239","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of reconstruction of specular surfaces using a combination of Dynamic Programming and Markov Random Fields formulation. Unlike traditional methods that require the exact position of environment points to be known, our method requires only the relative position of the environment points to be known for computing approximate normals and infer shape from them. We present an approach which estimates the depth from dynamic programming routine and MRF stereo matching and use MRF optimization to fuse the results to get the robust estimate of shape. We used smooth color gradient image as our environment texture so that shape can be recovered using just a single shot. We evaluate our method using synthetic experiments on 3D models like Stanford bunny and show the real experiment results on golden statue and silver coated statue.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRF and DP based specular surface reconstruction\",\"authors\":\"K. RavindraRedddy, A. Namboodiri\",\"doi\":\"10.1109/NCVPRIPG.2013.6776239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of reconstruction of specular surfaces using a combination of Dynamic Programming and Markov Random Fields formulation. Unlike traditional methods that require the exact position of environment points to be known, our method requires only the relative position of the environment points to be known for computing approximate normals and infer shape from them. We present an approach which estimates the depth from dynamic programming routine and MRF stereo matching and use MRF optimization to fuse the results to get the robust estimate of shape. We used smooth color gradient image as our environment texture so that shape can be recovered using just a single shot. We evaluate our method using synthetic experiments on 3D models like Stanford bunny and show the real experiment results on golden statue and silver coated statue.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将动态规划与马尔可夫随机场公式相结合,讨论了镜面的重建问题。与传统方法需要知道环境点的确切位置不同,我们的方法只需要知道环境点的相对位置,就可以计算近似法线并从中推断形状。提出了一种从动态规划程序和MRF立体匹配中估计深度的方法,并利用MRF优化对结果进行融合以获得形状的鲁棒估计。我们使用平滑的颜色渐变图像作为我们的环境纹理,这样形状就可以用一个镜头恢复。在斯坦福兔等三维模型上进行了综合实验,并展示了金像和镀银像的真实实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRF and DP based specular surface reconstruction
This paper addresses the problem of reconstruction of specular surfaces using a combination of Dynamic Programming and Markov Random Fields formulation. Unlike traditional methods that require the exact position of environment points to be known, our method requires only the relative position of the environment points to be known for computing approximate normals and infer shape from them. We present an approach which estimates the depth from dynamic programming routine and MRF stereo matching and use MRF optimization to fuse the results to get the robust estimate of shape. We used smooth color gradient image as our environment texture so that shape can be recovered using just a single shot. We evaluate our method using synthetic experiments on 3D models like Stanford bunny and show the real experiment results on golden statue and silver coated statue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信