{"title":"一种用于无线通信的小型UWB带缺口天线的设计与分析","authors":"Mohammad Monirrujjman Khan","doi":"10.3390/iec2020-06974","DOIUrl":null,"url":null,"abstract":"Development and investigation of a miniaturized ultra-wideband band notch antenna is demonstrated in this paper. The antenna was modeled and simulated using Computer Simulation Technology (CST)TM Microwave Studio software. The simulated results of this antenna are presented and analyzed. The performance parameters such as return loss, gain, radiation efficiency, radiation patterns are simulation-based results provided here. The main objective of this paper was to obtain band notch characteristics at the Wireless Local Area Network (5.15–5.8 GHz) and WiMax (5.25–5.85 GHz) in the UWB frequency ranges of 3.1–10.6 GHz in order to avoid interference. Results and analysis show that the antenna meets the objective and shows very good results. It has very compact size as well which is attractive feature of this antenna that will make it suitable for ultra-wideband wireless communication systems.","PeriodicalId":215878,"journal":{"name":"Proceedings of 1st International Electronic Conference - Futuristic Applications on Electronics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Analysis of A Compact UWB Band Notch Antenna for Wireless Communication\",\"authors\":\"Mohammad Monirrujjman Khan\",\"doi\":\"10.3390/iec2020-06974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development and investigation of a miniaturized ultra-wideband band notch antenna is demonstrated in this paper. The antenna was modeled and simulated using Computer Simulation Technology (CST)TM Microwave Studio software. The simulated results of this antenna are presented and analyzed. The performance parameters such as return loss, gain, radiation efficiency, radiation patterns are simulation-based results provided here. The main objective of this paper was to obtain band notch characteristics at the Wireless Local Area Network (5.15–5.8 GHz) and WiMax (5.25–5.85 GHz) in the UWB frequency ranges of 3.1–10.6 GHz in order to avoid interference. Results and analysis show that the antenna meets the objective and shows very good results. It has very compact size as well which is attractive feature of this antenna that will make it suitable for ultra-wideband wireless communication systems.\",\"PeriodicalId\":215878,\"journal\":{\"name\":\"Proceedings of 1st International Electronic Conference - Futuristic Applications on Electronics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Electronic Conference - Futuristic Applications on Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iec2020-06974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Electronic Conference - Futuristic Applications on Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iec2020-06974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of A Compact UWB Band Notch Antenna for Wireless Communication
Development and investigation of a miniaturized ultra-wideband band notch antenna is demonstrated in this paper. The antenna was modeled and simulated using Computer Simulation Technology (CST)TM Microwave Studio software. The simulated results of this antenna are presented and analyzed. The performance parameters such as return loss, gain, radiation efficiency, radiation patterns are simulation-based results provided here. The main objective of this paper was to obtain band notch characteristics at the Wireless Local Area Network (5.15–5.8 GHz) and WiMax (5.25–5.85 GHz) in the UWB frequency ranges of 3.1–10.6 GHz in order to avoid interference. Results and analysis show that the antenna meets the objective and shows very good results. It has very compact size as well which is attractive feature of this antenna that will make it suitable for ultra-wideband wireless communication systems.