基于SIFT-Gabor-Scale描述符的图像分类方法

Mingming Huang, Zhichun Mu, Hui Zeng
{"title":"基于SIFT-Gabor-Scale描述符的图像分类方法","authors":"Mingming Huang, Zhichun Mu, Hui Zeng","doi":"10.1109/ICWAPR.2014.6961292","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method of image classification based on SIFT-Gabor-Scale descriptors. At first, we design the patch-based SIFT-Gabor-Scale descriptor by integrating SIFT and Gabor-Scale features. Then a compact image presentation is obtained with the sparse coding spatial pyramid matching (ScSPM) method. Finally, image classification is implemented effectively with the simple linear SVM. Experimental results show that the proposed approach has a better classification performance on Caltech-101 dataset comparing to other methods.","PeriodicalId":439086,"journal":{"name":"2014 International Conference on Wavelet Analysis and Pattern Recognition","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A method of image classification based on SIFT-Gabor-Scale descriptors\",\"authors\":\"Mingming Huang, Zhichun Mu, Hui Zeng\",\"doi\":\"10.1109/ICWAPR.2014.6961292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method of image classification based on SIFT-Gabor-Scale descriptors. At first, we design the patch-based SIFT-Gabor-Scale descriptor by integrating SIFT and Gabor-Scale features. Then a compact image presentation is obtained with the sparse coding spatial pyramid matching (ScSPM) method. Finally, image classification is implemented effectively with the simple linear SVM. Experimental results show that the proposed approach has a better classification performance on Caltech-101 dataset comparing to other methods.\",\"PeriodicalId\":439086,\"journal\":{\"name\":\"2014 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2014.6961292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2014.6961292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于sift - gabor尺度描述子的图像分类新方法。首先,结合SIFT和Gabor-Scale特征,设计了基于patch的SIFT-Gabor-Scale描述符。然后利用稀疏编码空间金字塔匹配(ScSPM)方法得到图像的紧凑表示。最后,利用简单的线性支持向量机有效地实现了图像分类。实验结果表明,与其他方法相比,该方法对Caltech-101数据集具有更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method of image classification based on SIFT-Gabor-Scale descriptors
In this paper, we propose a new method of image classification based on SIFT-Gabor-Scale descriptors. At first, we design the patch-based SIFT-Gabor-Scale descriptor by integrating SIFT and Gabor-Scale features. Then a compact image presentation is obtained with the sparse coding spatial pyramid matching (ScSPM) method. Finally, image classification is implemented effectively with the simple linear SVM. Experimental results show that the proposed approach has a better classification performance on Caltech-101 dataset comparing to other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信