核中包含Wright函数的新分数算子

E. Ata, İ. O. Kıymaz
{"title":"核中包含Wright函数的新分数算子","authors":"E. Ata, İ. O. Kıymaz","doi":"10.47000/tjmcs.999775","DOIUrl":null,"url":null,"abstract":"In this paper, we defined new two-fractional derivative operators with a Wright function in their kernels. We also gave their Laplace and inverse Laplace transforms. Then, we presented some connections between the new fractional operators. Furthermore, as examples, we obtained solutions of differential equations involving new fractional operators. Finally, we examined the relations of the new fractional operators with the fractional operators, which can be found in the literature.","PeriodicalId":177259,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Fractional Operators Including Wright Function in Their Kernels\",\"authors\":\"E. Ata, İ. O. Kıymaz\",\"doi\":\"10.47000/tjmcs.999775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we defined new two-fractional derivative operators with a Wright function in their kernels. We also gave their Laplace and inverse Laplace transforms. Then, we presented some connections between the new fractional operators. Furthermore, as examples, we obtained solutions of differential equations involving new fractional operators. Finally, we examined the relations of the new fractional operators with the fractional operators, which can be found in the literature.\",\"PeriodicalId\":177259,\"journal\":{\"name\":\"Turkish Journal of Mathematics and Computer Science\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47000/tjmcs.999775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.999775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了新的二阶导数算子,其核中有一个Wright函数。我们也给出了它们的拉普拉斯变换和拉普拉斯逆变换。然后,我们给出了新的分数算子之间的一些联系。进一步,作为例子,我们得到了包含新分数算子的微分方程的解。最后,我们考察了新的分数算子与文献中已有的分数算子之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Fractional Operators Including Wright Function in Their Kernels
In this paper, we defined new two-fractional derivative operators with a Wright function in their kernels. We also gave their Laplace and inverse Laplace transforms. Then, we presented some connections between the new fractional operators. Furthermore, as examples, we obtained solutions of differential equations involving new fractional operators. Finally, we examined the relations of the new fractional operators with the fractional operators, which can be found in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信