{"title":"边缘老化社会网络中的链接预测","authors":"Ricky Laishram, K. Mehrotra, C. Mohan","doi":"10.1109/ICTAI.2016.0098","DOIUrl":null,"url":null,"abstract":"In social networks that change with time, an important problem is the prediction of new links that may be formed in the future. Existing works on link prediction have focused only on networks where links are permanent, an assumption that is not valid in many real world social networks. In many real world networks, in addition to new links being created, existing links also get removed. In this paper, we extend existing link prediction methods and apply a supervised learning algorithm to networks with non-permanent links. The results we obtain on Twitter @-mention networks show that our method performs very well in such networks.","PeriodicalId":245697,"journal":{"name":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Link Prediction in Social Networks with Edge Aging\",\"authors\":\"Ricky Laishram, K. Mehrotra, C. Mohan\",\"doi\":\"10.1109/ICTAI.2016.0098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In social networks that change with time, an important problem is the prediction of new links that may be formed in the future. Existing works on link prediction have focused only on networks where links are permanent, an assumption that is not valid in many real world social networks. In many real world networks, in addition to new links being created, existing links also get removed. In this paper, we extend existing link prediction methods and apply a supervised learning algorithm to networks with non-permanent links. The results we obtain on Twitter @-mention networks show that our method performs very well in such networks.\",\"PeriodicalId\":245697,\"journal\":{\"name\":\"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2016.0098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2016.0098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Link Prediction in Social Networks with Edge Aging
In social networks that change with time, an important problem is the prediction of new links that may be formed in the future. Existing works on link prediction have focused only on networks where links are permanent, an assumption that is not valid in many real world social networks. In many real world networks, in addition to new links being created, existing links also get removed. In this paper, we extend existing link prediction methods and apply a supervised learning algorithm to networks with non-permanent links. The results we obtain on Twitter @-mention networks show that our method performs very well in such networks.