{"title":"KP, BKP和s分量KP层次的多项式函数","authors":"V. Kac, N. Rozhkovskaya, J. van de Leur","doi":"10.1063/5.0013017","DOIUrl":null,"url":null,"abstract":"We show that any polynomial tau-function of the s-component KP and the BKP hierarchies can be interpreted as a zero mode of an appropriate combinatorial generating function. As an application, we obtain explicit formulas for all polynomial tau-functions of these hierarchies in terms of Schur polynomials and Q-Schur polynomials respectively. We also obtain formulas for polynomial tau-functions of the reductions of the s-component KP hierarchy associated to partitions in s parts.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Polynomial tau-functions of the KP, BKP, and the s-component KP hierarchies\",\"authors\":\"V. Kac, N. Rozhkovskaya, J. van de Leur\",\"doi\":\"10.1063/5.0013017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any polynomial tau-function of the s-component KP and the BKP hierarchies can be interpreted as a zero mode of an appropriate combinatorial generating function. As an application, we obtain explicit formulas for all polynomial tau-functions of these hierarchies in terms of Schur polynomials and Q-Schur polynomials respectively. We also obtain formulas for polynomial tau-functions of the reductions of the s-component KP hierarchy associated to partitions in s parts.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0013017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0013017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polynomial tau-functions of the KP, BKP, and the s-component KP hierarchies
We show that any polynomial tau-function of the s-component KP and the BKP hierarchies can be interpreted as a zero mode of an appropriate combinatorial generating function. As an application, we obtain explicit formulas for all polynomial tau-functions of these hierarchies in terms of Schur polynomials and Q-Schur polynomials respectively. We also obtain formulas for polynomial tau-functions of the reductions of the s-component KP hierarchy associated to partitions in s parts.