基于Rao算法和Kapur熵的多级图像阈值分割

E. Turajlić, E. Buza, Amila Akagic
{"title":"基于Rao算法和Kapur熵的多级图像阈值分割","authors":"E. Turajlić, E. Buza, Amila Akagic","doi":"10.1109/ICAT54566.2022.9811171","DOIUrl":null,"url":null,"abstract":"In the fields of computer vision and digital image processing, image segmentation denotes a process whereby an image is segmented into multiple regions. Image segmentation based on multilevel thresholding has received significant attention in recent literature. In this paper, a multilevel thresholding approach based on three different Rao algorithms and Kapur’s entropy is investigated. The performance of the considered thresholding methods is evaluated on a dataset of 10 standard benchmark images using the mean of objective function values, the standard deviation of objective function values, and the best objective function value obtained over a fixed number of independent runs. The experimental results demonstrate the effectiveness of the multilevel thresholding approach based on Rao algorithms and Kapur’s entropy.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multilevel image thresholding based on Rao algorithms and Kapur’s Entropy\",\"authors\":\"E. Turajlić, E. Buza, Amila Akagic\",\"doi\":\"10.1109/ICAT54566.2022.9811171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the fields of computer vision and digital image processing, image segmentation denotes a process whereby an image is segmented into multiple regions. Image segmentation based on multilevel thresholding has received significant attention in recent literature. In this paper, a multilevel thresholding approach based on three different Rao algorithms and Kapur’s entropy is investigated. The performance of the considered thresholding methods is evaluated on a dataset of 10 standard benchmark images using the mean of objective function values, the standard deviation of objective function values, and the best objective function value obtained over a fixed number of independent runs. The experimental results demonstrate the effectiveness of the multilevel thresholding approach based on Rao algorithms and Kapur’s entropy.\",\"PeriodicalId\":414786,\"journal\":{\"name\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT54566.2022.9811171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在计算机视觉和数字图像处理领域,图像分割是指将图像分割成多个区域的过程。基于多级阈值分割的图像分割方法在近年来得到了广泛的关注。本文研究了一种基于三种不同的Rao算法和Kapur熵的多级阈值分割方法。在10个标准基准图像的数据集上,使用目标函数值的平均值、目标函数值的标准差以及在固定次数的独立运行中获得的最佳目标函数值来评估所考虑的阈值分割方法的性能。实验结果证明了基于Rao算法和Kapur熵的多级阈值方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilevel image thresholding based on Rao algorithms and Kapur’s Entropy
In the fields of computer vision and digital image processing, image segmentation denotes a process whereby an image is segmented into multiple regions. Image segmentation based on multilevel thresholding has received significant attention in recent literature. In this paper, a multilevel thresholding approach based on three different Rao algorithms and Kapur’s entropy is investigated. The performance of the considered thresholding methods is evaluated on a dataset of 10 standard benchmark images using the mean of objective function values, the standard deviation of objective function values, and the best objective function value obtained over a fixed number of independent runs. The experimental results demonstrate the effectiveness of the multilevel thresholding approach based on Rao algorithms and Kapur’s entropy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信