{"title":"2.38 GHz体内信道的无线电波传播特性","authors":"Yomna El-Saboni, G. Conway, S. Cotton, W. Scanlon","doi":"10.1109/BSN.2017.7936029","DOIUrl":null,"url":null,"abstract":"Applications are emerging that feature multiple implanted devices as part of an intra-body network. Establishing high bandwidth communications between such devices is challenging and there is a need to understand the principles of the intra-body channel. This paper presents a numerical analysis of the wave propagation between identical antennas in the MedRadio operating band (2.36–2.40 GHz) within cylindrical three layered tissue equivalent phantoms. The results presented show the effect of dielectric boundaries and different tissue properties on dominant wave propagation paths and link gain which provides essential information for efficient system design.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Radiowave propagation characteristics of the intra-body channel at 2.38 GHz\",\"authors\":\"Yomna El-Saboni, G. Conway, S. Cotton, W. Scanlon\",\"doi\":\"10.1109/BSN.2017.7936029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications are emerging that feature multiple implanted devices as part of an intra-body network. Establishing high bandwidth communications between such devices is challenging and there is a need to understand the principles of the intra-body channel. This paper presents a numerical analysis of the wave propagation between identical antennas in the MedRadio operating band (2.36–2.40 GHz) within cylindrical three layered tissue equivalent phantoms. The results presented show the effect of dielectric boundaries and different tissue properties on dominant wave propagation paths and link gain which provides essential information for efficient system design.\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7936029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radiowave propagation characteristics of the intra-body channel at 2.38 GHz
Applications are emerging that feature multiple implanted devices as part of an intra-body network. Establishing high bandwidth communications between such devices is challenging and there is a need to understand the principles of the intra-body channel. This paper presents a numerical analysis of the wave propagation between identical antennas in the MedRadio operating band (2.36–2.40 GHz) within cylindrical three layered tissue equivalent phantoms. The results presented show the effect of dielectric boundaries and different tissue properties on dominant wave propagation paths and link gain which provides essential information for efficient system design.