Itzel Jared Rodríguez Martínez, F. Clemente, Gunter Kanitz, A. Mannini, A. Sabatini, C. Cipriani
{"title":"利用弹性网进行通道选择的HD-EMG记录抓取力估计:初步研究","authors":"Itzel Jared Rodríguez Martínez, F. Clemente, Gunter Kanitz, A. Mannini, A. Sabatini, C. Cipriani","doi":"10.1109/BIOROB.2018.8487894","DOIUrl":null,"url":null,"abstract":"Ahstract- The force applied with a prosthetic device is fundamental for the correct handling of objects in daily tasks. However, it is also a factor that normally gets relegated to a secondary plane, as researchers mainly focus on decoding the users intent in terms of movements to be performed. Continuous estimates of the grasp force from the electromyographic (EMG) signals were proposed in the past. As motor actions are preplanned in humans, we hypothesized that it would be possible to decode the intended grasp force from the transient state of the EMG signal. We tested this hypothesis by using features extracted from surface HD-EMG recordings from forearm muscles, classified using artificial neural networks. Data from 6 able-bodied subjects were collected. They were trained and tested at segments of 120 ms with 20 ms overlap, starting 1 s before and ending 0.5 s after the detection of the onset with different subsets of channels. The results obtained showed that the transient phase contains information about the target grasp force, achieving predictions of 2.62 % MVC average absolute errors within 430 ms from the onset of the EMG.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Grasp Force Estimation from HD-EMG Recordings with Channel Selection Using Elastic Nets: Preliminary Study\",\"authors\":\"Itzel Jared Rodríguez Martínez, F. Clemente, Gunter Kanitz, A. Mannini, A. Sabatini, C. Cipriani\",\"doi\":\"10.1109/BIOROB.2018.8487894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ahstract- The force applied with a prosthetic device is fundamental for the correct handling of objects in daily tasks. However, it is also a factor that normally gets relegated to a secondary plane, as researchers mainly focus on decoding the users intent in terms of movements to be performed. Continuous estimates of the grasp force from the electromyographic (EMG) signals were proposed in the past. As motor actions are preplanned in humans, we hypothesized that it would be possible to decode the intended grasp force from the transient state of the EMG signal. We tested this hypothesis by using features extracted from surface HD-EMG recordings from forearm muscles, classified using artificial neural networks. Data from 6 able-bodied subjects were collected. They were trained and tested at segments of 120 ms with 20 ms overlap, starting 1 s before and ending 0.5 s after the detection of the onset with different subsets of channels. The results obtained showed that the transient phase contains information about the target grasp force, achieving predictions of 2.62 % MVC average absolute errors within 430 ms from the onset of the EMG.\",\"PeriodicalId\":382522,\"journal\":{\"name\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOROB.2018.8487894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2018.8487894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Grasp Force Estimation from HD-EMG Recordings with Channel Selection Using Elastic Nets: Preliminary Study
Ahstract- The force applied with a prosthetic device is fundamental for the correct handling of objects in daily tasks. However, it is also a factor that normally gets relegated to a secondary plane, as researchers mainly focus on decoding the users intent in terms of movements to be performed. Continuous estimates of the grasp force from the electromyographic (EMG) signals were proposed in the past. As motor actions are preplanned in humans, we hypothesized that it would be possible to decode the intended grasp force from the transient state of the EMG signal. We tested this hypothesis by using features extracted from surface HD-EMG recordings from forearm muscles, classified using artificial neural networks. Data from 6 able-bodied subjects were collected. They were trained and tested at segments of 120 ms with 20 ms overlap, starting 1 s before and ending 0.5 s after the detection of the onset with different subsets of channels. The results obtained showed that the transient phase contains information about the target grasp force, achieving predictions of 2.62 % MVC average absolute errors within 430 ms from the onset of the EMG.