基于层递归神经网络的电力系统负荷预测

Nikita Mittal, Akash Saxena
{"title":"基于层递归神经网络的电力系统负荷预测","authors":"Nikita Mittal, Akash Saxena","doi":"10.11591/IJEECS.V16.I3.PP423-430","DOIUrl":null,"url":null,"abstract":"This paper presents a straight forward application of Layer Recurrent Neural Network (LRNN) to predict the load of a large distribution network. Short term load forecasting provides important information about the system’s load pattern, which is a premier requirement in planning periodical operations and facility expansion. Approximation of data patterns for forecasting is not an easy task to perform. In past, various approaches have been applied for forecasting. In this work application of LRNN is explored. The results of proposed architecture are compared with other conventional topologies of neural networks on the basis of Root Mean Square of Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). It is observed that the results obtained from LRNN are comparatively more significant.","PeriodicalId":247642,"journal":{"name":"TELKOMNIKA Indonesian Journal of Electrical Engineering","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Layer Recurrent Neural Network based Power System Load Forecasting\",\"authors\":\"Nikita Mittal, Akash Saxena\",\"doi\":\"10.11591/IJEECS.V16.I3.PP423-430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a straight forward application of Layer Recurrent Neural Network (LRNN) to predict the load of a large distribution network. Short term load forecasting provides important information about the system’s load pattern, which is a premier requirement in planning periodical operations and facility expansion. Approximation of data patterns for forecasting is not an easy task to perform. In past, various approaches have been applied for forecasting. In this work application of LRNN is explored. The results of proposed architecture are compared with other conventional topologies of neural networks on the basis of Root Mean Square of Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). It is observed that the results obtained from LRNN are comparatively more significant.\",\"PeriodicalId\":247642,\"journal\":{\"name\":\"TELKOMNIKA Indonesian Journal of Electrical Engineering\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELKOMNIKA Indonesian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJEECS.V16.I3.PP423-430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJEECS.V16.I3.PP423-430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种直接应用分层递归神经网络(LRNN)预测大型配电网负荷的方法。短期负荷预测提供了系统负荷模式的重要信息,是规划定期运行和设施扩建的首要要求。对数据模式进行近似预测并不是一件容易的事。过去,各种方法被应用于预测。本文探讨了LRNN的应用。在误差均方根(RMSE)、平均绝对百分比误差(MAPE)和平均绝对误差(MAE)的基础上,将所提出的结构与其他传统神经网络拓扑结构进行了比较。观察到LRNN得到的结果相对更显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layer Recurrent Neural Network based Power System Load Forecasting
This paper presents a straight forward application of Layer Recurrent Neural Network (LRNN) to predict the load of a large distribution network. Short term load forecasting provides important information about the system’s load pattern, which is a premier requirement in planning periodical operations and facility expansion. Approximation of data patterns for forecasting is not an easy task to perform. In past, various approaches have been applied for forecasting. In this work application of LRNN is explored. The results of proposed architecture are compared with other conventional topologies of neural networks on the basis of Root Mean Square of Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). It is observed that the results obtained from LRNN are comparatively more significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信