利用随机森林预测共享单车需求

T. T. Ngo, H. Pham, Juan G. Acosta, S. Derrible
{"title":"利用随机森林预测共享单车需求","authors":"T. T. Ngo, H. Pham, Juan G. Acosta, S. Derrible","doi":"10.58845/jstt.utt.2022.en65","DOIUrl":null,"url":null,"abstract":"Being able to accurately predict bike-sharing demand is important for Intelligent Transport Systems and traveler information systems. These challenges have been addressed in a number of cities worldwide. This article uses Random Forest (RF) and k-fold cross-validation to predict the hourly count of rental bikes (cnt/h) in the city of Seoul (Korea) using information related to rental hour, temperature, humidity, wind speed, visibility, dewpoint, solar radiation, snowfall, and rainfall. The performance of the proposed RF model is evaluated using three statistical measurements: root mean squared error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The results show that the RF model has high predictive accuracy with an RMSE of 210 cnt/h, an MAE of 121 cnt/h, and an R of 0.90. The performance of the RF model is also compared with a linear regression model and shows superior accuracy.","PeriodicalId":117856,"journal":{"name":"Journal of Science and Transport Technology","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Bike-Sharing Demand Using Random Forest\",\"authors\":\"T. T. Ngo, H. Pham, Juan G. Acosta, S. Derrible\",\"doi\":\"10.58845/jstt.utt.2022.en65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Being able to accurately predict bike-sharing demand is important for Intelligent Transport Systems and traveler information systems. These challenges have been addressed in a number of cities worldwide. This article uses Random Forest (RF) and k-fold cross-validation to predict the hourly count of rental bikes (cnt/h) in the city of Seoul (Korea) using information related to rental hour, temperature, humidity, wind speed, visibility, dewpoint, solar radiation, snowfall, and rainfall. The performance of the proposed RF model is evaluated using three statistical measurements: root mean squared error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The results show that the RF model has high predictive accuracy with an RMSE of 210 cnt/h, an MAE of 121 cnt/h, and an R of 0.90. The performance of the RF model is also compared with a linear regression model and shows superior accuracy.\",\"PeriodicalId\":117856,\"journal\":{\"name\":\"Journal of Science and Transport Technology\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Transport Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58845/jstt.utt.2022.en65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Transport Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58845/jstt.utt.2022.en65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

能够准确预测共享单车需求对于智能交通系统和出行信息系统非常重要。这些挑战已经在世界各地的一些城市得到了解决。本文使用随机森林(RF)和k-fold交叉验证来预测首尔(韩国)的每小时出租自行车数量(吨/小时),使用与出租时间、温度、湿度、风速、能见度、露点、太阳辐射、降雪和降雨相关的信息。采用均方根误差(RMSE)、平均绝对误差(MAE)和相关系数(R) 3个统计指标对该模型进行了性能评价。结果表明,该模型具有较高的预测精度,RMSE为210 cnt/h, MAE为121 cnt/h, R为0.90。并与线性回归模型进行了比较,结果表明该模型具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Bike-Sharing Demand Using Random Forest
Being able to accurately predict bike-sharing demand is important for Intelligent Transport Systems and traveler information systems. These challenges have been addressed in a number of cities worldwide. This article uses Random Forest (RF) and k-fold cross-validation to predict the hourly count of rental bikes (cnt/h) in the city of Seoul (Korea) using information related to rental hour, temperature, humidity, wind speed, visibility, dewpoint, solar radiation, snowfall, and rainfall. The performance of the proposed RF model is evaluated using three statistical measurements: root mean squared error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The results show that the RF model has high predictive accuracy with an RMSE of 210 cnt/h, an MAE of 121 cnt/h, and an R of 0.90. The performance of the RF model is also compared with a linear regression model and shows superior accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信