{"title":"面向时尚识别的本体驱动层次深度学习","authors":"Zhenzhong Kuang, Jun Yu, Zhou Yu, Jianping Fan","doi":"10.1109/MIPR.2018.00012","DOIUrl":null,"url":null,"abstract":"We present an automatic approach for large-scale fashion recognition, given an image without any kind of annotation. We formulate the problem as a hierarchical deep learning (HDL) algorithm which can: (i) integrate the deep CNNs to learn more discriminative high-level features for fashion image representations of both coarse-grained and fine-grained classes at different levels of the fashion ontology tree; (ii) leverage multi-task learning and inter-task relationship constraint to train more discriminative classifiers for the nodes on the fashion ontology; (iii) use back propagation to simultaneously refine both the relevant node classifiers and the deep CNNs according to a joint objective function; and (iv) accelerate the fashion retrieval process via path-based classification. The experimental results have verified the effectiveness and efficiency of our proposed algorithm on both classification and retrieval performance.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ontology-Driven Hierarchical Deep Learning for Fashion Recognition\",\"authors\":\"Zhenzhong Kuang, Jun Yu, Zhou Yu, Jianping Fan\",\"doi\":\"10.1109/MIPR.2018.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an automatic approach for large-scale fashion recognition, given an image without any kind of annotation. We formulate the problem as a hierarchical deep learning (HDL) algorithm which can: (i) integrate the deep CNNs to learn more discriminative high-level features for fashion image representations of both coarse-grained and fine-grained classes at different levels of the fashion ontology tree; (ii) leverage multi-task learning and inter-task relationship constraint to train more discriminative classifiers for the nodes on the fashion ontology; (iii) use back propagation to simultaneously refine both the relevant node classifiers and the deep CNNs according to a joint objective function; and (iv) accelerate the fashion retrieval process via path-based classification. The experimental results have verified the effectiveness and efficiency of our proposed algorithm on both classification and retrieval performance.\",\"PeriodicalId\":320000,\"journal\":{\"name\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR.2018.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ontology-Driven Hierarchical Deep Learning for Fashion Recognition
We present an automatic approach for large-scale fashion recognition, given an image without any kind of annotation. We formulate the problem as a hierarchical deep learning (HDL) algorithm which can: (i) integrate the deep CNNs to learn more discriminative high-level features for fashion image representations of both coarse-grained and fine-grained classes at different levels of the fashion ontology tree; (ii) leverage multi-task learning and inter-task relationship constraint to train more discriminative classifiers for the nodes on the fashion ontology; (iii) use back propagation to simultaneously refine both the relevant node classifiers and the deep CNNs according to a joint objective function; and (iv) accelerate the fashion retrieval process via path-based classification. The experimental results have verified the effectiveness and efficiency of our proposed algorithm on both classification and retrieval performance.