基于广义瑞利混合模型的SAR图像CFAR船舶检测

Hicham Madjidi, T. Laroussi, Faiçal Farah
{"title":"基于广义瑞利混合模型的SAR图像CFAR船舶检测","authors":"Hicham Madjidi, T. Laroussi, Faiçal Farah","doi":"10.1109/ICATEEE57445.2022.10093718","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar (SAR) is a powerful equipment that has gained popularity as it synthetically produces higher resolution images in any weather conditions and even at night. For this reason, the SAR can be used to detect ships using Constant False Alarm Rate (CFAR) algorithms. In this paper, based on the Expectation-Maximization (EM) algorithm, we introduce the Generalized Rayleigh Mixture Model (GRMM), for characterizing sea clutter. In doing this, we use an adaptive global threshold to generate a censorship map that indicates if each sample in the image is likely a target pixel. Experiments carried out on a real SAR image, show that the GRMM-CFAR detector transcends the existing detectors.","PeriodicalId":150519,"journal":{"name":"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFAR Ship Detection in SAR Images Based on the Generalized Rayleigh Mixture Models\",\"authors\":\"Hicham Madjidi, T. Laroussi, Faiçal Farah\",\"doi\":\"10.1109/ICATEEE57445.2022.10093718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Aperture Radar (SAR) is a powerful equipment that has gained popularity as it synthetically produces higher resolution images in any weather conditions and even at night. For this reason, the SAR can be used to detect ships using Constant False Alarm Rate (CFAR) algorithms. In this paper, based on the Expectation-Maximization (EM) algorithm, we introduce the Generalized Rayleigh Mixture Model (GRMM), for characterizing sea clutter. In doing this, we use an adaptive global threshold to generate a censorship map that indicates if each sample in the image is likely a target pixel. Experiments carried out on a real SAR image, show that the GRMM-CFAR detector transcends the existing detectors.\",\"PeriodicalId\":150519,\"journal\":{\"name\":\"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICATEEE57445.2022.10093718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATEEE57445.2022.10093718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成孔径雷达(SAR)是一种强大的设备,由于它在任何天气条件下甚至在夜间合成出更高分辨率的图像而受到欢迎。因此,SAR可用于使用恒定虚警率(CFAR)算法检测船舶。本文在期望最大化(EM)算法的基础上,引入广义瑞利混合模型(GRMM)来表征海杂波。在此过程中,我们使用自适应全局阈值来生成审查图,该图表明图像中的每个样本是否可能是目标像素。在真实SAR图像上进行的实验表明,GRMM-CFAR探测器优于现有的探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFAR Ship Detection in SAR Images Based on the Generalized Rayleigh Mixture Models
Synthetic Aperture Radar (SAR) is a powerful equipment that has gained popularity as it synthetically produces higher resolution images in any weather conditions and even at night. For this reason, the SAR can be used to detect ships using Constant False Alarm Rate (CFAR) algorithms. In this paper, based on the Expectation-Maximization (EM) algorithm, we introduce the Generalized Rayleigh Mixture Model (GRMM), for characterizing sea clutter. In doing this, we use an adaptive global threshold to generate a censorship map that indicates if each sample in the image is likely a target pixel. Experiments carried out on a real SAR image, show that the GRMM-CFAR detector transcends the existing detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信