{"title":"从加权Bergman Nevanlinna空间到Zygmund空间的微分前复合算子","authors":"Pawan Kumar, R. Chugh, Jagjeet","doi":"10.15520/ajcem.2014.vol3.iss4.2.pp42-47","DOIUrl":null,"url":null,"abstract":"Let ɸ be an analytic map on the open unit disk D in the complex plane such that ɸ (D)⊂ D. The composition operator DCɸ : is defined by DC ɸ ( f ) =( fo ɸ ) ′ In this paper, the boundedness and compactness of the composition operator DC ɸ from the weighted Bergman Nevanlinna spaces to Zygmund spaces are investigated. Subject Classification: Primary 47B33,46E10; secondary 30D55","PeriodicalId":173381,"journal":{"name":"Asian Journal of Current Engineering and Maths","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition Operator Preceeding By Differentiation From Weighted Bergman Nevanlinna Spaces To Zygmund Spaces\",\"authors\":\"Pawan Kumar, R. Chugh, Jagjeet\",\"doi\":\"10.15520/ajcem.2014.vol3.iss4.2.pp42-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ɸ be an analytic map on the open unit disk D in the complex plane such that ɸ (D)⊂ D. The composition operator DCɸ : is defined by DC ɸ ( f ) =( fo ɸ ) ′ In this paper, the boundedness and compactness of the composition operator DC ɸ from the weighted Bergman Nevanlinna spaces to Zygmund spaces are investigated. Subject Classification: Primary 47B33,46E10; secondary 30D55\",\"PeriodicalId\":173381,\"journal\":{\"name\":\"Asian Journal of Current Engineering and Maths\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Current Engineering and Maths\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15520/ajcem.2014.vol3.iss4.2.pp42-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Current Engineering and Maths","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15520/ajcem.2014.vol3.iss4.2.pp42-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设h为复平面上开单位盘D上的解析映射,使得h (D)∧D。复合算子DC h:由DC h (f) =(fo h)’定义。本文研究了从加权Bergman Nevanlinna空间到Zygmund空间的复合算子DC h的有界性和紧性。科目分类:初级47B33、46E10;二次30 d55
Composition Operator Preceeding By Differentiation From Weighted Bergman Nevanlinna Spaces To Zygmund Spaces
Let ɸ be an analytic map on the open unit disk D in the complex plane such that ɸ (D)⊂ D. The composition operator DCɸ : is defined by DC ɸ ( f ) =( fo ɸ ) ′ In this paper, the boundedness and compactness of the composition operator DC ɸ from the weighted Bergman Nevanlinna spaces to Zygmund spaces are investigated. Subject Classification: Primary 47B33,46E10; secondary 30D55