从加权Bergman Nevanlinna空间到Zygmund空间的微分前复合算子

Pawan Kumar, R. Chugh, Jagjeet
{"title":"从加权Bergman Nevanlinna空间到Zygmund空间的微分前复合算子","authors":"Pawan Kumar, R. Chugh, Jagjeet","doi":"10.15520/ajcem.2014.vol3.iss4.2.pp42-47","DOIUrl":null,"url":null,"abstract":"Let ɸ be an analytic map on the open unit disk D in the complex plane such that ɸ (D)⊂ D. The composition operator DCɸ : is defined by DC ɸ ( f ) =( fo ɸ ) ′ In this paper, the boundedness and compactness of the composition op­erator DC ɸ from the weighted Bergman Nevanlinna spaces to Zygmund spaces are  investigated. Subject Classification: Primary 47B33,46E10; secondary 30D55","PeriodicalId":173381,"journal":{"name":"Asian Journal of Current Engineering and Maths","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition Operator Preceeding By Differentiation From Weighted Bergman Nevanlinna Spaces To Zygmund Spaces\",\"authors\":\"Pawan Kumar, R. Chugh, Jagjeet\",\"doi\":\"10.15520/ajcem.2014.vol3.iss4.2.pp42-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ɸ be an analytic map on the open unit disk D in the complex plane such that ɸ (D)⊂ D. The composition operator DCɸ : is defined by DC ɸ ( f ) =( fo ɸ ) ′ In this paper, the boundedness and compactness of the composition op­erator DC ɸ from the weighted Bergman Nevanlinna spaces to Zygmund spaces are  investigated. Subject Classification: Primary 47B33,46E10; secondary 30D55\",\"PeriodicalId\":173381,\"journal\":{\"name\":\"Asian Journal of Current Engineering and Maths\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Current Engineering and Maths\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15520/ajcem.2014.vol3.iss4.2.pp42-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Current Engineering and Maths","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15520/ajcem.2014.vol3.iss4.2.pp42-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设h为复平面上开单位盘D上的解析映射,使得h (D)∧D。复合算子DC h:由DC h (f) =(fo h)’定义。本文研究了从加权Bergman Nevanlinna空间到Zygmund空间的复合算子DC h的有界性和紧性。科目分类:初级47B33、46E10;二次30 d55
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composition Operator Preceeding By Differentiation From Weighted Bergman Nevanlinna Spaces To Zygmund Spaces
Let ɸ be an analytic map on the open unit disk D in the complex plane such that ɸ (D)⊂ D. The composition operator DCɸ : is defined by DC ɸ ( f ) =( fo ɸ ) ′ In this paper, the boundedness and compactness of the composition op­erator DC ɸ from the weighted Bergman Nevanlinna spaces to Zygmund spaces are  investigated. Subject Classification: Primary 47B33,46E10; secondary 30D55
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信