快速指纹检索与线检测

Huicheng Lian
{"title":"快速指纹检索与线检测","authors":"Huicheng Lian","doi":"10.1109/ICPR.2010.771","DOIUrl":null,"url":null,"abstract":"In this paper, a retrieval method is proposed for audio and video fingerprinting systems by adopting a line detection technique. To achieve fast retrieval, the ‘lines’ are generated from sub-fingerprints of query and database, and the non-candidate lines are filtered out. So, the distance between query and refers can be calculated fast. To demonstrate the superiority of this method, the audio fingerprints and video fingerprints are generated for comparisons. The experimental results indicate that the proposed method outperforms the direct hashing method.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Fingerprint Retrieval with Line Detection\",\"authors\":\"Huicheng Lian\",\"doi\":\"10.1109/ICPR.2010.771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a retrieval method is proposed for audio and video fingerprinting systems by adopting a line detection technique. To achieve fast retrieval, the ‘lines’ are generated from sub-fingerprints of query and database, and the non-candidate lines are filtered out. So, the distance between query and refers can be calculated fast. To demonstrate the superiority of this method, the audio fingerprints and video fingerprints are generated for comparisons. The experimental results indicate that the proposed method outperforms the direct hashing method.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于线检测技术的音频和视频指纹检索方法。为了实现快速检索,从查询和数据库的子指纹中生成“行”,并过滤掉非候选行。因此,查询和引用之间的距离可以快速计算。为了证明该方法的优越性,我们生成了音频指纹和视频指纹进行对比。实验结果表明,该方法优于直接哈希方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Fingerprint Retrieval with Line Detection
In this paper, a retrieval method is proposed for audio and video fingerprinting systems by adopting a line detection technique. To achieve fast retrieval, the ‘lines’ are generated from sub-fingerprints of query and database, and the non-candidate lines are filtered out. So, the distance between query and refers can be calculated fast. To demonstrate the superiority of this method, the audio fingerprints and video fingerprints are generated for comparisons. The experimental results indicate that the proposed method outperforms the direct hashing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信