非优先信念修正的语义方法

Log. J. IGPL Pub Date : 2020-02-01 DOI:10.1093/jigpal/jzz045
Elise Perrotin, F. R. Velázquez-Quesada
{"title":"非优先信念修正的语义方法","authors":"Elise Perrotin, F. R. Velázquez-Quesada","doi":"10.1093/jigpal/jzz045","DOIUrl":null,"url":null,"abstract":"\n Belief revision is concerned with belief change fired by incoming information. Despite the variety of frameworks representing it, most revision policies share one crucial feature: incoming information outweighs current information and hence, in case of conflict, incoming information will prevail. However, if one is interested in representing the way actual humans revise their beliefs, one might not always want for the agent to blindly believe everything they are told. This manuscript presents a semantic approach to non-prioritized belief revision. It uses plausibility models for depicting an agent’s beliefs, and model operations for displaying the way beliefs change. The first proposal, semantically-based screened revision, compares the current model with the one the revision would yield, accepting or rejecting the incoming information depending on whether the ‘differences’ between these models go beyond a given threshold. The second proposal, semantically-based gradual revision, turns the binary decision of acceptance or rejection into a more general setting in which a revision always occurs, with the threshold used rather to choose ‘the right revision’ for the given input and model.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Semantic Approach to Non-prioritized Belief Revision\",\"authors\":\"Elise Perrotin, F. R. Velázquez-Quesada\",\"doi\":\"10.1093/jigpal/jzz045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Belief revision is concerned with belief change fired by incoming information. Despite the variety of frameworks representing it, most revision policies share one crucial feature: incoming information outweighs current information and hence, in case of conflict, incoming information will prevail. However, if one is interested in representing the way actual humans revise their beliefs, one might not always want for the agent to blindly believe everything they are told. This manuscript presents a semantic approach to non-prioritized belief revision. It uses plausibility models for depicting an agent’s beliefs, and model operations for displaying the way beliefs change. The first proposal, semantically-based screened revision, compares the current model with the one the revision would yield, accepting or rejecting the incoming information depending on whether the ‘differences’ between these models go beyond a given threshold. The second proposal, semantically-based gradual revision, turns the binary decision of acceptance or rejection into a more general setting in which a revision always occurs, with the threshold used rather to choose ‘the right revision’ for the given input and model.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzz045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzz045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

信念修正关注的是由传入信息引起的信念改变。尽管表示它的框架多种多样,但大多数修订策略都有一个关键特征:传入信息比当前信息重要,因此,在冲突的情况下,传入信息将占上风。然而,如果一个人对真实的人类修正他们信念的方式感兴趣,他可能并不总是希望代理盲目地相信他们被告知的一切。本文提出了一种非优先信念修正的语义方法。它使用可信性模型来描述代理的信念,并使用模型操作来显示信念变化的方式。第一个建议是基于语义的筛选修订,将当前模型与修订将产生的模型进行比较,根据这些模型之间的“差异”是否超过给定的阈值,接受或拒绝传入的信息。第二种建议是基于语义的渐进修正,它将接受或拒绝的二元决策转变为更一般的设置,在这种设置中,修订总是发生,使用阈值而不是为给定的输入和模型选择“正确的修订”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semantic Approach to Non-prioritized Belief Revision
Belief revision is concerned with belief change fired by incoming information. Despite the variety of frameworks representing it, most revision policies share one crucial feature: incoming information outweighs current information and hence, in case of conflict, incoming information will prevail. However, if one is interested in representing the way actual humans revise their beliefs, one might not always want for the agent to blindly believe everything they are told. This manuscript presents a semantic approach to non-prioritized belief revision. It uses plausibility models for depicting an agent’s beliefs, and model operations for displaying the way beliefs change. The first proposal, semantically-based screened revision, compares the current model with the one the revision would yield, accepting or rejecting the incoming information depending on whether the ‘differences’ between these models go beyond a given threshold. The second proposal, semantically-based gradual revision, turns the binary decision of acceptance or rejection into a more general setting in which a revision always occurs, with the threshold used rather to choose ‘the right revision’ for the given input and model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信