用于人体姿态估计的遮挡鲁棒模型学习

Yuki Kawana, N. Ukita
{"title":"用于人体姿态估计的遮挡鲁棒模型学习","authors":"Yuki Kawana, N. Ukita","doi":"10.1109/ACPR.2015.7486552","DOIUrl":null,"url":null,"abstract":"In this paper we examine the efficacy of self-occlusion-aware appearance learning for the part based model. Appearance modeling with less accurate appearance data is problematic because it adversely affects entire learning process. We evaluate the effectiveness of mitigating the influence of self-occluded body parts to be modeled for better appearance modeling process. To meet this end, We introduce an effective method for scoring degree of self-occlusion and we employ an approach learning a sample proportionally weighted to the score. We present our approach improves the performance of human pose estimation.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Occlusion-robust model learning for human pose estimation\",\"authors\":\"Yuki Kawana, N. Ukita\",\"doi\":\"10.1109/ACPR.2015.7486552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we examine the efficacy of self-occlusion-aware appearance learning for the part based model. Appearance modeling with less accurate appearance data is problematic because it adversely affects entire learning process. We evaluate the effectiveness of mitigating the influence of self-occluded body parts to be modeled for better appearance modeling process. To meet this end, We introduce an effective method for scoring degree of self-occlusion and we employ an approach learning a sample proportionally weighted to the score. We present our approach improves the performance of human pose estimation.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们检验了基于零件模型的自闭塞感知外观学习的有效性。使用不太准确的外观数据进行外观建模是有问题的,因为它会对整个学习过程产生不利影响。为了更好的外观建模过程,我们评估了减轻自闭塞身体部位影响的有效性。为了达到这一目的,我们引入了一种有效的自闭塞程度评分方法,并采用了一种方法来学习与分数成比例加权的样本。我们提出的方法提高了人体姿态估计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occlusion-robust model learning for human pose estimation
In this paper we examine the efficacy of self-occlusion-aware appearance learning for the part based model. Appearance modeling with less accurate appearance data is problematic because it adversely affects entire learning process. We evaluate the effectiveness of mitigating the influence of self-occluded body parts to be modeled for better appearance modeling process. To meet this end, We introduce an effective method for scoring degree of self-occlusion and we employ an approach learning a sample proportionally weighted to the score. We present our approach improves the performance of human pose estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信