{"title":"用于人体姿态估计的遮挡鲁棒模型学习","authors":"Yuki Kawana, N. Ukita","doi":"10.1109/ACPR.2015.7486552","DOIUrl":null,"url":null,"abstract":"In this paper we examine the efficacy of self-occlusion-aware appearance learning for the part based model. Appearance modeling with less accurate appearance data is problematic because it adversely affects entire learning process. We evaluate the effectiveness of mitigating the influence of self-occluded body parts to be modeled for better appearance modeling process. To meet this end, We introduce an effective method for scoring degree of self-occlusion and we employ an approach learning a sample proportionally weighted to the score. We present our approach improves the performance of human pose estimation.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Occlusion-robust model learning for human pose estimation\",\"authors\":\"Yuki Kawana, N. Ukita\",\"doi\":\"10.1109/ACPR.2015.7486552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we examine the efficacy of self-occlusion-aware appearance learning for the part based model. Appearance modeling with less accurate appearance data is problematic because it adversely affects entire learning process. We evaluate the effectiveness of mitigating the influence of self-occluded body parts to be modeled for better appearance modeling process. To meet this end, We introduce an effective method for scoring degree of self-occlusion and we employ an approach learning a sample proportionally weighted to the score. We present our approach improves the performance of human pose estimation.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Occlusion-robust model learning for human pose estimation
In this paper we examine the efficacy of self-occlusion-aware appearance learning for the part based model. Appearance modeling with less accurate appearance data is problematic because it adversely affects entire learning process. We evaluate the effectiveness of mitigating the influence of self-occluded body parts to be modeled for better appearance modeling process. To meet this end, We introduce an effective method for scoring degree of self-occlusion and we employ an approach learning a sample proportionally weighted to the score. We present our approach improves the performance of human pose estimation.