{"title":"基于信息风险最小化的机器学习统一pac -贝叶斯框架","authors":"Sharu Theresa Jose, O. Simeone","doi":"10.1109/mlsp52302.2021.9596170","DOIUrl":null,"url":null,"abstract":"Machine unlearning refers to mechanisms that can remove the influence of a subset of training data upon request from a trained model without incurring the cost of re-training from scratch. This paper develops a unified PAC-Bayesian framework for machine unlearning that recovers the two recent design principles - variational unlearning [1] and forgetting Lagrangian [2] as information risk minimization problems [3]. Accordingly, both criteria can be interpreted as PAC-Bayesian upper bounds on the test loss of the unlearned model that take the form of free energy metrics.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Unified PAC-Bayesian Framework for Machine Unlearning via Information Risk Minimization\",\"authors\":\"Sharu Theresa Jose, O. Simeone\",\"doi\":\"10.1109/mlsp52302.2021.9596170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine unlearning refers to mechanisms that can remove the influence of a subset of training data upon request from a trained model without incurring the cost of re-training from scratch. This paper develops a unified PAC-Bayesian framework for machine unlearning that recovers the two recent design principles - variational unlearning [1] and forgetting Lagrangian [2] as information risk minimization problems [3]. Accordingly, both criteria can be interpreted as PAC-Bayesian upper bounds on the test loss of the unlearned model that take the form of free energy metrics.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Unified PAC-Bayesian Framework for Machine Unlearning via Information Risk Minimization
Machine unlearning refers to mechanisms that can remove the influence of a subset of training data upon request from a trained model without incurring the cost of re-training from scratch. This paper develops a unified PAC-Bayesian framework for machine unlearning that recovers the two recent design principles - variational unlearning [1] and forgetting Lagrangian [2] as information risk minimization problems [3]. Accordingly, both criteria can be interpreted as PAC-Bayesian upper bounds on the test loss of the unlearned model that take the form of free energy metrics.