不确定性下基于模型的软件架构性能分析

Catia Trubiani, Indika Meedeniya, V. Cortellessa, A. Aleti, Lars Grunske
{"title":"不确定性下基于模型的软件架构性能分析","authors":"Catia Trubiani, Indika Meedeniya, V. Cortellessa, A. Aleti, Lars Grunske","doi":"10.1145/2465478.2465487","DOIUrl":null,"url":null,"abstract":"Performance analysis is often conducted before achieving full knowledge of a software system, in other words under a certain degree of uncertainty. Uncertainty is particularly critical in the performance domain when it relates to values of parameters such as workload, operational profile, resource demand of services, service time of hardware devices, etc. The goal of this paper is to explicitly consider uncertainty in the performance modelling and analysis process. In particular, we use probabilistic formulation of parameter uncertainties and present a Monte Carlo simulation-based approach to systematically assess the robustness of an architectural model despite its uncertainty. In case of unsatisfactory results, we introduce refactoring actions aimed at generating new software architectural models that better tolerate the uncertainty of parameters. The proposed approach is illustrated on a case study from the e-Health domain.","PeriodicalId":110790,"journal":{"name":"International ACM SIGSOFT Conference on Quality of Software Architectures","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Model-based performance analysis of software architectures under uncertainty\",\"authors\":\"Catia Trubiani, Indika Meedeniya, V. Cortellessa, A. Aleti, Lars Grunske\",\"doi\":\"10.1145/2465478.2465487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance analysis is often conducted before achieving full knowledge of a software system, in other words under a certain degree of uncertainty. Uncertainty is particularly critical in the performance domain when it relates to values of parameters such as workload, operational profile, resource demand of services, service time of hardware devices, etc. The goal of this paper is to explicitly consider uncertainty in the performance modelling and analysis process. In particular, we use probabilistic formulation of parameter uncertainties and present a Monte Carlo simulation-based approach to systematically assess the robustness of an architectural model despite its uncertainty. In case of unsatisfactory results, we introduce refactoring actions aimed at generating new software architectural models that better tolerate the uncertainty of parameters. The proposed approach is illustrated on a case study from the e-Health domain.\",\"PeriodicalId\":110790,\"journal\":{\"name\":\"International ACM SIGSOFT Conference on Quality of Software Architectures\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International ACM SIGSOFT Conference on Quality of Software Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465478.2465487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International ACM SIGSOFT Conference on Quality of Software Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465478.2465487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

性能分析通常是在完全了解软件系统之前进行的,换句话说,在一定程度的不确定性下。当不确定性涉及到诸如工作负载、操作概要、服务的资源需求、硬件设备的服务时间等参数值时,它在性能领域尤为重要。本文的目的是明确考虑性能建模和分析过程中的不确定性。特别是,我们使用参数不确定性的概率公式,并提出了一种基于蒙特卡罗模拟的方法来系统地评估体系结构模型的鲁棒性,尽管它具有不确定性。如果结果不令人满意,我们将引入旨在生成新的软件架构模型的重构操作,以更好地容忍参数的不确定性。通过电子健康领域的一个案例研究说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based performance analysis of software architectures under uncertainty
Performance analysis is often conducted before achieving full knowledge of a software system, in other words under a certain degree of uncertainty. Uncertainty is particularly critical in the performance domain when it relates to values of parameters such as workload, operational profile, resource demand of services, service time of hardware devices, etc. The goal of this paper is to explicitly consider uncertainty in the performance modelling and analysis process. In particular, we use probabilistic formulation of parameter uncertainties and present a Monte Carlo simulation-based approach to systematically assess the robustness of an architectural model despite its uncertainty. In case of unsatisfactory results, we introduce refactoring actions aimed at generating new software architectural models that better tolerate the uncertainty of parameters. The proposed approach is illustrated on a case study from the e-Health domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信