一种用于数值优化的混合Aquila优化器正弦余弦算法

Fei Chu, Jiayang Wang, Fulin Tian
{"title":"一种用于数值优化的混合Aquila优化器正弦余弦算法","authors":"Fei Chu, Jiayang Wang, Fulin Tian","doi":"10.1145/3590003.3590048","DOIUrl":null,"url":null,"abstract":"To address the shortcomings of the Aquila optimizer algorithm (AO), this paper proposes a novel hybrid Aquila Optimizer sine cosine Algorithm(AO-SCA). Firstly, Singer chaotic mapping is used for initialization, so that the initial solution position distribution was more homogeneous, and increased the richness of the population. Secondly, in the exploration phase of AO, the concept of sine and cosine algorithm is integrated and the nonlinear sine learning factor is introduced to balance the local and global digging ability and accelerate the convergence speed. Finally, through the numerical experiment simulation of 8 benchmark functions, the results show that the optimization ability and convergence speed of the proposed algorithm is better.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid Aquila Optimizer sine cosine Algorithm for Numerical Optimization\",\"authors\":\"Fei Chu, Jiayang Wang, Fulin Tian\",\"doi\":\"10.1145/3590003.3590048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the shortcomings of the Aquila optimizer algorithm (AO), this paper proposes a novel hybrid Aquila Optimizer sine cosine Algorithm(AO-SCA). Firstly, Singer chaotic mapping is used for initialization, so that the initial solution position distribution was more homogeneous, and increased the richness of the population. Secondly, in the exploration phase of AO, the concept of sine and cosine algorithm is integrated and the nonlinear sine learning factor is introduced to balance the local and global digging ability and accelerate the convergence speed. Finally, through the numerical experiment simulation of 8 benchmark functions, the results show that the optimization ability and convergence speed of the proposed algorithm is better.\",\"PeriodicalId\":340225,\"journal\":{\"name\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3590003.3590048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对Aquila优化器算法(AO)的不足,提出了一种新的Aquila优化器正弦余弦混合算法(AO- sca)。首先,采用Singer混沌映射进行初始化,使初始解位置分布更加均匀,增加了种群的丰富度;其次,在AO的探索阶段,整合了正弦和余弦算法的概念,引入非线性正弦学习因子,平衡了局部和全局挖掘能力,加快了收敛速度;最后,通过8个基准函数的数值实验模拟,结果表明所提算法具有较好的优化能力和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid Aquila Optimizer sine cosine Algorithm for Numerical Optimization
To address the shortcomings of the Aquila optimizer algorithm (AO), this paper proposes a novel hybrid Aquila Optimizer sine cosine Algorithm(AO-SCA). Firstly, Singer chaotic mapping is used for initialization, so that the initial solution position distribution was more homogeneous, and increased the richness of the population. Secondly, in the exploration phase of AO, the concept of sine and cosine algorithm is integrated and the nonlinear sine learning factor is introduced to balance the local and global digging ability and accelerate the convergence speed. Finally, through the numerical experiment simulation of 8 benchmark functions, the results show that the optimization ability and convergence speed of the proposed algorithm is better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信