{"title":"一种用于数值优化的混合Aquila优化器正弦余弦算法","authors":"Fei Chu, Jiayang Wang, Fulin Tian","doi":"10.1145/3590003.3590048","DOIUrl":null,"url":null,"abstract":"To address the shortcomings of the Aquila optimizer algorithm (AO), this paper proposes a novel hybrid Aquila Optimizer sine cosine Algorithm(AO-SCA). Firstly, Singer chaotic mapping is used for initialization, so that the initial solution position distribution was more homogeneous, and increased the richness of the population. Secondly, in the exploration phase of AO, the concept of sine and cosine algorithm is integrated and the nonlinear sine learning factor is introduced to balance the local and global digging ability and accelerate the convergence speed. Finally, through the numerical experiment simulation of 8 benchmark functions, the results show that the optimization ability and convergence speed of the proposed algorithm is better.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid Aquila Optimizer sine cosine Algorithm for Numerical Optimization\",\"authors\":\"Fei Chu, Jiayang Wang, Fulin Tian\",\"doi\":\"10.1145/3590003.3590048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the shortcomings of the Aquila optimizer algorithm (AO), this paper proposes a novel hybrid Aquila Optimizer sine cosine Algorithm(AO-SCA). Firstly, Singer chaotic mapping is used for initialization, so that the initial solution position distribution was more homogeneous, and increased the richness of the population. Secondly, in the exploration phase of AO, the concept of sine and cosine algorithm is integrated and the nonlinear sine learning factor is introduced to balance the local and global digging ability and accelerate the convergence speed. Finally, through the numerical experiment simulation of 8 benchmark functions, the results show that the optimization ability and convergence speed of the proposed algorithm is better.\",\"PeriodicalId\":340225,\"journal\":{\"name\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3590003.3590048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid Aquila Optimizer sine cosine Algorithm for Numerical Optimization
To address the shortcomings of the Aquila optimizer algorithm (AO), this paper proposes a novel hybrid Aquila Optimizer sine cosine Algorithm(AO-SCA). Firstly, Singer chaotic mapping is used for initialization, so that the initial solution position distribution was more homogeneous, and increased the richness of the population. Secondly, in the exploration phase of AO, the concept of sine and cosine algorithm is integrated and the nonlinear sine learning factor is introduced to balance the local and global digging ability and accelerate the convergence speed. Finally, through the numerical experiment simulation of 8 benchmark functions, the results show that the optimization ability and convergence speed of the proposed algorithm is better.