打击社会垃圾邮件制造者的两阶段无监督方法

D. Koggalahewa, Yue Xu, Ernest Foo
{"title":"打击社会垃圾邮件制造者的两阶段无监督方法","authors":"D. Koggalahewa, Yue Xu, Ernest Foo","doi":"10.1109/SSCI47803.2020.9308315","DOIUrl":null,"url":null,"abstract":"Spammers use Online Social Networks (OSNs) as a popular platform for spreading malicious content and links. The nature of OSNs allows the spammers to bypass the combating techniques by changing their behaviours. Classification based approaches are the most common technique for spam detection. “Data labelling” “spam drift” “imbalanced datasets” and “data fabrication” are the most common limitations of classification techniques that hinder the accuracy of spam detection. The paper presents a two-stage fully unsupervised approach using a user’s peer acceptance within OSN to distinguish spammers from genuine users. User’s common shared interest over multiple topics and the mentioning behaviour are used to derive the peer acceptance. The contribution of the paper is a pure unsupervised method to detect spammers based on users’ peer acceptance without labelled datasets. Our unsupervised approach is able to achieve 95.9% accuracy without the need for labelling.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"276 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Two-stage Unsupervised Approach for Combating Social Spammers\",\"authors\":\"D. Koggalahewa, Yue Xu, Ernest Foo\",\"doi\":\"10.1109/SSCI47803.2020.9308315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spammers use Online Social Networks (OSNs) as a popular platform for spreading malicious content and links. The nature of OSNs allows the spammers to bypass the combating techniques by changing their behaviours. Classification based approaches are the most common technique for spam detection. “Data labelling” “spam drift” “imbalanced datasets” and “data fabrication” are the most common limitations of classification techniques that hinder the accuracy of spam detection. The paper presents a two-stage fully unsupervised approach using a user’s peer acceptance within OSN to distinguish spammers from genuine users. User’s common shared interest over multiple topics and the mentioning behaviour are used to derive the peer acceptance. The contribution of the paper is a pure unsupervised method to detect spammers based on users’ peer acceptance without labelled datasets. Our unsupervised approach is able to achieve 95.9% accuracy without the need for labelling.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"276 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

垃圾邮件发送者使用在线社交网络(OSNs)作为传播恶意内容和链接的流行平台。osn的性质允许垃圾邮件发送者通过改变其行为来绕过打击技术。基于分类的方法是垃圾邮件检测最常用的技术。“数据标签”、“垃圾邮件漂移”、“不平衡数据集”和“数据伪造”是分类技术最常见的限制,阻碍了垃圾邮件检测的准确性。本文提出了一种两阶段完全无监督的方法,使用用户在OSN内的对等接受度来区分垃圾邮件发送者和真实用户。利用用户对多个话题的共同兴趣和提及行为来推导用户的接受度。本文的贡献是一种纯粹的无监督方法,可以在没有标记数据集的情况下,基于用户的同行接受度来检测垃圾邮件发送者。我们的无监督方法在不需要标记的情况下能够达到95.9%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-stage Unsupervised Approach for Combating Social Spammers
Spammers use Online Social Networks (OSNs) as a popular platform for spreading malicious content and links. The nature of OSNs allows the spammers to bypass the combating techniques by changing their behaviours. Classification based approaches are the most common technique for spam detection. “Data labelling” “spam drift” “imbalanced datasets” and “data fabrication” are the most common limitations of classification techniques that hinder the accuracy of spam detection. The paper presents a two-stage fully unsupervised approach using a user’s peer acceptance within OSN to distinguish spammers from genuine users. User’s common shared interest over multiple topics and the mentioning behaviour are used to derive the peer acceptance. The contribution of the paper is a pure unsupervised method to detect spammers based on users’ peer acceptance without labelled datasets. Our unsupervised approach is able to achieve 95.9% accuracy without the need for labelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信