用于DEM模型贝叶斯校正的迭代顺序蒙特卡罗滤波器

Hongyang Cheng, S. Luding, V. Magnanimo, T. Shuku, K. Thoeni, P. Tempone
{"title":"用于DEM模型贝叶斯校正的迭代顺序蒙特卡罗滤波器","authors":"Hongyang Cheng, S. Luding, V. Magnanimo, T. Shuku, K. Thoeni, P. Tempone","doi":"10.1201/9780429446931-47","DOIUrl":null,"url":null,"abstract":"The nonlinear history-dependent macroscopic behavior of granular materials is rooted in the micromechanics at contacts and irreversible rearrangements of the microstructure. This paper presents an iterative sequential Monte Carlo filter to infer micromechanical parameters for DEM modeling of granular materials from macroscopic measurements. To demonstrate the performance of the new Bayesian filter, the stress–strain behavior of fine glass beads under oedometric compression is considered. The parameter sets are initially sampled uniformly in parameter space and then resampled around highly probable subspaces, which shrink towards optimal solutions iteratively. The proposed calibration approach is fast, efficient and automated, because it uses the posterior distribution after a completed iteration as the proposal distribution for the succeeding iteration, and thereby allocating computational power to more probable simulation runs. The Bayesian filter can also serve as a powerful tool for uncertainty quantification and propagation across various scales in multiscale simulation of granular materials.","PeriodicalId":107346,"journal":{"name":"Numerical Methods in Geotechnical Engineering IX","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An iterative sequential Monte Carlo filter for Bayesian calibration of DEM models\",\"authors\":\"Hongyang Cheng, S. Luding, V. Magnanimo, T. Shuku, K. Thoeni, P. Tempone\",\"doi\":\"10.1201/9780429446931-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear history-dependent macroscopic behavior of granular materials is rooted in the micromechanics at contacts and irreversible rearrangements of the microstructure. This paper presents an iterative sequential Monte Carlo filter to infer micromechanical parameters for DEM modeling of granular materials from macroscopic measurements. To demonstrate the performance of the new Bayesian filter, the stress–strain behavior of fine glass beads under oedometric compression is considered. The parameter sets are initially sampled uniformly in parameter space and then resampled around highly probable subspaces, which shrink towards optimal solutions iteratively. The proposed calibration approach is fast, efficient and automated, because it uses the posterior distribution after a completed iteration as the proposal distribution for the succeeding iteration, and thereby allocating computational power to more probable simulation runs. The Bayesian filter can also serve as a powerful tool for uncertainty quantification and propagation across various scales in multiscale simulation of granular materials.\",\"PeriodicalId\":107346,\"journal\":{\"name\":\"Numerical Methods in Geotechnical Engineering IX\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Methods in Geotechnical Engineering IX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429446931-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods in Geotechnical Engineering IX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429446931-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

颗粒材料的非线性历史依赖宏观行为植根于微观力学接触和微观结构的不可逆重排。本文提出了一种迭代序贯蒙特卡罗滤波器,从宏观测量中推断颗粒材料的微观力学参数,用于DEM建模。为了验证新贝叶斯滤波器的性能,考虑了细玻璃微珠在尺度压缩下的应力-应变行为。参数集首先在参数空间中均匀采样,然后在高概率子空间周围重新采样,迭代地向最优解收缩。该方法采用迭代完成后的后验分布作为后续迭代的建议分布,从而将计算能力分配给更可能的模拟运行,具有快速、高效和自动化的特点。贝叶斯滤波器在颗粒材料多尺度模拟中也可以作为不确定性量化和跨尺度传播的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An iterative sequential Monte Carlo filter for Bayesian calibration of DEM models
The nonlinear history-dependent macroscopic behavior of granular materials is rooted in the micromechanics at contacts and irreversible rearrangements of the microstructure. This paper presents an iterative sequential Monte Carlo filter to infer micromechanical parameters for DEM modeling of granular materials from macroscopic measurements. To demonstrate the performance of the new Bayesian filter, the stress–strain behavior of fine glass beads under oedometric compression is considered. The parameter sets are initially sampled uniformly in parameter space and then resampled around highly probable subspaces, which shrink towards optimal solutions iteratively. The proposed calibration approach is fast, efficient and automated, because it uses the posterior distribution after a completed iteration as the proposal distribution for the succeeding iteration, and thereby allocating computational power to more probable simulation runs. The Bayesian filter can also serve as a powerful tool for uncertainty quantification and propagation across various scales in multiscale simulation of granular materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信