一个c++类,支持缺乏状态的伴随状态方法

M. Enríquez
{"title":"一个c++类,支持缺乏状态的伴随状态方法","authors":"M. Enríquez","doi":"10.1145/1347787.1347805","DOIUrl":null,"url":null,"abstract":"The adjoint-state method is widely used for computing gradients in simulation-driven optimization problems. The adjoint-state evolution equation requires access to the entire history of the system states. There are instances, however, where the required state for the adjoint-state evolution is not readily accessible. This poster introduces a C++ class, StateHistory, to support multiple solutions to this problem. Derived StateHistory classes implement a (simulation) time-altering function and data-access functions, which can be used in tandem to access the entire state history. These ideas were implemented in the context of TSOpt, a time-stepping library for simulation-driven optimization algorithms. Copyright is held by author/owner(s) Tapia'07, October 14-17, 2007, Lake Buena Vista, Florida, USA ACM 978-1-59593-866-4/07/0010","PeriodicalId":326471,"journal":{"name":"Richard Tapia Celebration of Diversity in Computing Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A C++ class supporting state-deficient adjoint state methods\",\"authors\":\"M. Enríquez\",\"doi\":\"10.1145/1347787.1347805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adjoint-state method is widely used for computing gradients in simulation-driven optimization problems. The adjoint-state evolution equation requires access to the entire history of the system states. There are instances, however, where the required state for the adjoint-state evolution is not readily accessible. This poster introduces a C++ class, StateHistory, to support multiple solutions to this problem. Derived StateHistory classes implement a (simulation) time-altering function and data-access functions, which can be used in tandem to access the entire state history. These ideas were implemented in the context of TSOpt, a time-stepping library for simulation-driven optimization algorithms. Copyright is held by author/owner(s) Tapia'07, October 14-17, 2007, Lake Buena Vista, Florida, USA ACM 978-1-59593-866-4/07/0010\",\"PeriodicalId\":326471,\"journal\":{\"name\":\"Richard Tapia Celebration of Diversity in Computing Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Richard Tapia Celebration of Diversity in Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1347787.1347805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Richard Tapia Celebration of Diversity in Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1347787.1347805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在仿真驱动优化问题中,伴随状态法被广泛应用于梯度计算。伴随状态演化方程需要访问系统状态的整个历史。然而,在某些情况下,伴随状态演化所需的状态并不容易达到。这张海报介绍了一个c++类StateHistory来支持这个问题的多种解决方案。派生的StateHistory类实现了一个(模拟的)时间改变函数和数据访问函数,它们可以串联使用来访问整个状态历史。这些想法是在topt的背景下实现的,topt是一个用于仿真驱动优化算法的时间步进库。版权由作者/所有者Tapia'07持有,2007年10月14日至17日,美国佛罗里达州Lake Buena Vista, ACM 978-1-59593-866-4/07/0010
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A C++ class supporting state-deficient adjoint state methods
The adjoint-state method is widely used for computing gradients in simulation-driven optimization problems. The adjoint-state evolution equation requires access to the entire history of the system states. There are instances, however, where the required state for the adjoint-state evolution is not readily accessible. This poster introduces a C++ class, StateHistory, to support multiple solutions to this problem. Derived StateHistory classes implement a (simulation) time-altering function and data-access functions, which can be used in tandem to access the entire state history. These ideas were implemented in the context of TSOpt, a time-stepping library for simulation-driven optimization algorithms. Copyright is held by author/owner(s) Tapia'07, October 14-17, 2007, Lake Buena Vista, Florida, USA ACM 978-1-59593-866-4/07/0010
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信