峰约束最小二乘半带滤波器和正交小波

M. Liu, S. Verma, C. Zarowski, F. Fairman
{"title":"峰约束最小二乘半带滤波器和正交小波","authors":"M. Liu, S. Verma, C. Zarowski, F. Fairman","doi":"10.1109/PACRIM.1999.799480","DOIUrl":null,"url":null,"abstract":"To recall, Cooklev (1995) made some extensions to the Bernstein polynomial method of Caglar and Akansu (1993) for the design of regular half-band filters leading to orthogonal wavelets. However, the ad hoc methodology of Cooklev had many shortcomings which we eliminate by expressing the problem in the form of a quadratic programming problem with linear inequality constraints. This problem is solved with the Goldfarb-Idnani (1983) algorithm, and the methodology we adopt allows for the minimization of half-band filter stopband energy while simultaneously upper bounding the stopband response. This allows us to make the peak sidelobe level (PSL) and stopband energy (SE) tradeoff explained in Adams and Sullivan (see IEEE Trans. on Signal Proc., vol. 46, p.306-20, 1998). Regular half-band filters designed in this way lead to regular orthogonal wavelets. This paper therefore presents a solution to all difficulties noted in Zarowski (see PACRIM'97, Victoria, BC, Canada, p.477-80, 1997).","PeriodicalId":176763,"journal":{"name":"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Peak-constrained least-squares half-band filters and orthogonal wavelets\",\"authors\":\"M. Liu, S. Verma, C. Zarowski, F. Fairman\",\"doi\":\"10.1109/PACRIM.1999.799480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To recall, Cooklev (1995) made some extensions to the Bernstein polynomial method of Caglar and Akansu (1993) for the design of regular half-band filters leading to orthogonal wavelets. However, the ad hoc methodology of Cooklev had many shortcomings which we eliminate by expressing the problem in the form of a quadratic programming problem with linear inequality constraints. This problem is solved with the Goldfarb-Idnani (1983) algorithm, and the methodology we adopt allows for the minimization of half-band filter stopband energy while simultaneously upper bounding the stopband response. This allows us to make the peak sidelobe level (PSL) and stopband energy (SE) tradeoff explained in Adams and Sullivan (see IEEE Trans. on Signal Proc., vol. 46, p.306-20, 1998). Regular half-band filters designed in this way lead to regular orthogonal wavelets. This paper therefore presents a solution to all difficulties noted in Zarowski (see PACRIM'97, Victoria, BC, Canada, p.477-80, 1997).\",\"PeriodicalId\":176763,\"journal\":{\"name\":\"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1999.799480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1999.799480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

回想一下,Cooklev(1995)对Caglar和Akansu(1993)的Bernstein多项式方法进行了一些扩展,用于设计导致正交小波的规则半带滤波器。然而,Cooklev的特别方法有许多缺点,我们通过将问题表示为具有线性不等式约束的二次规划问题来消除这些缺点。这个问题是用Goldfarb-Idnani(1983)算法解决的,我们采用的方法允许最小化半带滤波器阻带能量,同时限制阻带响应的上限。这使我们能够在Adams和Sullivan中解释的峰值旁瓣电平(PSL)和阻带能量(SE)之间进行权衡。《信号学报》,第46卷,第306- 20,1998年)。用这种方法设计的规则半带滤波器产生规则的正交小波。因此,本文提出了解决Zarowski指出的所有困难的方法(参见PACRIM'97, Victoria, BC, Canada, p.477- 80,1997)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peak-constrained least-squares half-band filters and orthogonal wavelets
To recall, Cooklev (1995) made some extensions to the Bernstein polynomial method of Caglar and Akansu (1993) for the design of regular half-band filters leading to orthogonal wavelets. However, the ad hoc methodology of Cooklev had many shortcomings which we eliminate by expressing the problem in the form of a quadratic programming problem with linear inequality constraints. This problem is solved with the Goldfarb-Idnani (1983) algorithm, and the methodology we adopt allows for the minimization of half-band filter stopband energy while simultaneously upper bounding the stopband response. This allows us to make the peak sidelobe level (PSL) and stopband energy (SE) tradeoff explained in Adams and Sullivan (see IEEE Trans. on Signal Proc., vol. 46, p.306-20, 1998). Regular half-band filters designed in this way lead to regular orthogonal wavelets. This paper therefore presents a solution to all difficulties noted in Zarowski (see PACRIM'97, Victoria, BC, Canada, p.477-80, 1997).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信