具有自动聚类数的聚类融合

P. Muneeswaran, P. Velvizhy, A. Kannan
{"title":"具有自动聚类数的聚类融合","authors":"P. Muneeswaran, P. Velvizhy, A. Kannan","doi":"10.1109/ICRTIT.2014.6996186","DOIUrl":null,"url":null,"abstract":"Most of the real world applications use data clustering techniques for effective data analysis. All clustering techniques have some assumptions on the underlying dataset. We can get accurate clusters if the assumptions hold good. But it is difficult to satisfy all assumptions. Currently, not a single clustering algorithm is available to find all types of cluster shapes and structures. Therefore, an ensemble clustering algorithm is proposed in this paper in order to produce accurate clusters. Moreover, the existing clustering ensemble methods require more number of clusters in advance to produce final clusters. In this paper, we propose a novel method which groups a set of clusters into accurate final clusters to enhance the decision accuracy. This method does not need the number of clusters as input but produces the clusters automatically assuming the no of clusters.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering fusion with automatic cluster number\",\"authors\":\"P. Muneeswaran, P. Velvizhy, A. Kannan\",\"doi\":\"10.1109/ICRTIT.2014.6996186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the real world applications use data clustering techniques for effective data analysis. All clustering techniques have some assumptions on the underlying dataset. We can get accurate clusters if the assumptions hold good. But it is difficult to satisfy all assumptions. Currently, not a single clustering algorithm is available to find all types of cluster shapes and structures. Therefore, an ensemble clustering algorithm is proposed in this paper in order to produce accurate clusters. Moreover, the existing clustering ensemble methods require more number of clusters in advance to produce final clusters. In this paper, we propose a novel method which groups a set of clusters into accurate final clusters to enhance the decision accuracy. This method does not need the number of clusters as input but produces the clusters automatically assuming the no of clusters.\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大多数实际应用程序都使用数据聚类技术进行有效的数据分析。所有聚类技术都对底层数据集有一些假设。如果假设成立,我们可以得到准确的聚类。但是很难满足所有的假设。目前,没有一个单一的聚类算法可以找到所有类型的聚类形状和结构。为此,本文提出了一种集成聚类算法,以获得准确的聚类。此外,现有的聚类集成方法需要更多的聚类来生成最终的聚类。本文提出了一种新的方法,将一组聚类划分为精确的最终聚类,以提高决策精度。该方法不需要输入集群数量,而是假设集群数量自动生成集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering fusion with automatic cluster number
Most of the real world applications use data clustering techniques for effective data analysis. All clustering techniques have some assumptions on the underlying dataset. We can get accurate clusters if the assumptions hold good. But it is difficult to satisfy all assumptions. Currently, not a single clustering algorithm is available to find all types of cluster shapes and structures. Therefore, an ensemble clustering algorithm is proposed in this paper in order to produce accurate clusters. Moreover, the existing clustering ensemble methods require more number of clusters in advance to produce final clusters. In this paper, we propose a novel method which groups a set of clusters into accurate final clusters to enhance the decision accuracy. This method does not need the number of clusters as input but produces the clusters automatically assuming the no of clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信