利用胸部ct扫描图像提取的手工特征检测COVID-19

Aditya Shinde, S. Shinde
{"title":"利用胸部ct扫描图像提取的手工特征检测COVID-19","authors":"Aditya Shinde, S. Shinde","doi":"10.1109/ISCON57294.2023.10112122","DOIUrl":null,"url":null,"abstract":"Coronavirus illness, which was initially diagnosed in 2019 but has propagated rapidly across the globe, has led to increased fatalities. According to professional physicians who examined chest CT scans, COVID-19 behaves differently than various viral cases of pneumonia. Even though the illness only recently emerged, a number of research investigations have been performed wherein the progression of the disease impacts mostly on the lungs are identified using thoracic CT scans. In this work, automated identification of COVID-19 is used by using machine learning classifier trained on more than 1000+ lung CT Scan images. As a result, immediate diagnosis of COVID-19, which is very much necessary in the opinion of healthcare specialists, is feasible. To improve detection accuracy, the feature extraction method are applied on regions of interests. Feature extraction approaches, including Discrete Wavelet Transform (DWT), Grey Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), and Grey-Level Size Zone Matrix (GLSZM) algorithms are used. Then the classification by using Support Vector Machines (SVM) is used. The classification accuracy is assessed by using precision, specificity, accuracy, sensitivity and F-score measures. Among all feature extraction methods, the GLCM approach has given the optimum classification accuracy of 95.6%.","PeriodicalId":280183,"journal":{"name":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Detection by Using Handcrafted Features Extracted From Chest CT-Scan Images\",\"authors\":\"Aditya Shinde, S. Shinde\",\"doi\":\"10.1109/ISCON57294.2023.10112122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronavirus illness, which was initially diagnosed in 2019 but has propagated rapidly across the globe, has led to increased fatalities. According to professional physicians who examined chest CT scans, COVID-19 behaves differently than various viral cases of pneumonia. Even though the illness only recently emerged, a number of research investigations have been performed wherein the progression of the disease impacts mostly on the lungs are identified using thoracic CT scans. In this work, automated identification of COVID-19 is used by using machine learning classifier trained on more than 1000+ lung CT Scan images. As a result, immediate diagnosis of COVID-19, which is very much necessary in the opinion of healthcare specialists, is feasible. To improve detection accuracy, the feature extraction method are applied on regions of interests. Feature extraction approaches, including Discrete Wavelet Transform (DWT), Grey Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), and Grey-Level Size Zone Matrix (GLSZM) algorithms are used. Then the classification by using Support Vector Machines (SVM) is used. The classification accuracy is assessed by using precision, specificity, accuracy, sensitivity and F-score measures. Among all feature extraction methods, the GLCM approach has given the optimum classification accuracy of 95.6%.\",\"PeriodicalId\":280183,\"journal\":{\"name\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Information Systems and Computer Networks (ISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCON57294.2023.10112122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON57294.2023.10112122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冠状病毒疾病最初于2019年被诊断出来,但在全球迅速传播,导致死亡人数增加。根据检查胸部CT扫描的专业医生的说法,新冠肺炎的表现与各种病毒性肺炎不同。尽管这种疾病最近才出现,但已经进行了许多研究调查,其中疾病的进展主要是通过胸部CT扫描确定对肺部的影响。在这项工作中,通过使用在1000多张肺部CT扫描图像上训练的机器学习分类器来自动识别COVID-19。因此,立即诊断COVID-19是可行的,这在医疗保健专家看来是非常必要的。为了提高检测精度,对感兴趣区域进行特征提取。特征提取方法包括离散小波变换(DWT)、灰度协同矩阵(GLCM)、灰度运行长度矩阵(GLRLM)和灰度大小区域矩阵(GLSZM)算法。然后利用支持向量机(SVM)进行分类。通过精密度、特异度、准确度、灵敏度和f评分来评估分类准确性。在所有特征提取方法中,GLCM方法的分类准确率达到95.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID-19 Detection by Using Handcrafted Features Extracted From Chest CT-Scan Images
Coronavirus illness, which was initially diagnosed in 2019 but has propagated rapidly across the globe, has led to increased fatalities. According to professional physicians who examined chest CT scans, COVID-19 behaves differently than various viral cases of pneumonia. Even though the illness only recently emerged, a number of research investigations have been performed wherein the progression of the disease impacts mostly on the lungs are identified using thoracic CT scans. In this work, automated identification of COVID-19 is used by using machine learning classifier trained on more than 1000+ lung CT Scan images. As a result, immediate diagnosis of COVID-19, which is very much necessary in the opinion of healthcare specialists, is feasible. To improve detection accuracy, the feature extraction method are applied on regions of interests. Feature extraction approaches, including Discrete Wavelet Transform (DWT), Grey Level Cooccurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), and Grey-Level Size Zone Matrix (GLSZM) algorithms are used. Then the classification by using Support Vector Machines (SVM) is used. The classification accuracy is assessed by using precision, specificity, accuracy, sensitivity and F-score measures. Among all feature extraction methods, the GLCM approach has given the optimum classification accuracy of 95.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信