汉语逗号基本语篇单元识别

Shengqin Xu, Peifeng Li
{"title":"汉语逗号基本语篇单元识别","authors":"Shengqin Xu, Peifeng Li","doi":"10.1109/IALP.2013.8","DOIUrl":null,"url":null,"abstract":"Element discourse unit (EDU) recognition is the primary task of discourse analysis. Chinese punctuation is viewed as a delimiter of elementary discourse units in Chinese. In this paper, we consider Chinese comma to be the boundary of the discourse units and also to anchor discourse relations between units separated by comma. We divide it into seven major types based on syntactic patterns and propose three different machine learning methods to automatically disambiguate the type of Chinese comma. The experimental results on Chinese Tree bank 6.0 show that our method outperforms the baseline.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recognizing Chinese Elementary Discourse Unit on Comma\",\"authors\":\"Shengqin Xu, Peifeng Li\",\"doi\":\"10.1109/IALP.2013.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Element discourse unit (EDU) recognition is the primary task of discourse analysis. Chinese punctuation is viewed as a delimiter of elementary discourse units in Chinese. In this paper, we consider Chinese comma to be the boundary of the discourse units and also to anchor discourse relations between units separated by comma. We divide it into seven major types based on syntactic patterns and propose three different machine learning methods to automatically disambiguate the type of Chinese comma. The experimental results on Chinese Tree bank 6.0 show that our method outperforms the baseline.\",\"PeriodicalId\":413833,\"journal\":{\"name\":\"2013 International Conference on Asian Language Processing\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2013.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

要素语篇单元识别是语篇分析的首要任务。汉语标点符号是汉语基本语篇单位的分隔符。在本文中,我们认为汉语逗号是语篇单位的边界,并锚定以逗号分隔的语篇单位之间的语篇关系。我们根据句法模式将其分为七种主要类型,并提出了三种不同的机器学习方法来自动消除汉语逗号类型的歧义。在Chinese Tree bank 6.0上的实验结果表明,我们的方法优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing Chinese Elementary Discourse Unit on Comma
Element discourse unit (EDU) recognition is the primary task of discourse analysis. Chinese punctuation is viewed as a delimiter of elementary discourse units in Chinese. In this paper, we consider Chinese comma to be the boundary of the discourse units and also to anchor discourse relations between units separated by comma. We divide it into seven major types based on syntactic patterns and propose three different machine learning methods to automatically disambiguate the type of Chinese comma. The experimental results on Chinese Tree bank 6.0 show that our method outperforms the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信