{"title":"用广义Reed Solomon码进行弱安全数据交换","authors":"M. Yan, A. Sprintson, I. Zelenko","doi":"10.1109/ISIT.2014.6875056","DOIUrl":null,"url":null,"abstract":"We focus on secure data exchange among a group of wireless clients. The clients exchange data by broadcasting linear combinations of packets over a lossless channel. The data exchange is performed in the presence of an eavesdropper who has access to the channel and can obtain all transmitted data. Our goal is to develop a weakly secure coding scheme that prevents the eavesdropper from being able to decode any of the original packets held by the clients. We present a randomized algorithm based on Generalized Reed-Solomon (GRS) codes. The algorithm has two key advantages over the previous solutions: it operates over a small (polynomial-size) finite field and provides a way to verify that constructed code is feasible. In contrast, the previous approaches require exponential field size and do not provide an efficient (polynomial-time) algorithm to verify the secrecy properties of the constructed code. We formulate an algebraic-geometric conjecture that implies the correctness of our algorithm and prove its validity for special cases. Our simulation results indicate that the algorithm is efficient in practical settings.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Weakly secure data exchange with Generalized Reed Solomon codes\",\"authors\":\"M. Yan, A. Sprintson, I. Zelenko\",\"doi\":\"10.1109/ISIT.2014.6875056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on secure data exchange among a group of wireless clients. The clients exchange data by broadcasting linear combinations of packets over a lossless channel. The data exchange is performed in the presence of an eavesdropper who has access to the channel and can obtain all transmitted data. Our goal is to develop a weakly secure coding scheme that prevents the eavesdropper from being able to decode any of the original packets held by the clients. We present a randomized algorithm based on Generalized Reed-Solomon (GRS) codes. The algorithm has two key advantages over the previous solutions: it operates over a small (polynomial-size) finite field and provides a way to verify that constructed code is feasible. In contrast, the previous approaches require exponential field size and do not provide an efficient (polynomial-time) algorithm to verify the secrecy properties of the constructed code. We formulate an algebraic-geometric conjecture that implies the correctness of our algorithm and prove its validity for special cases. Our simulation results indicate that the algorithm is efficient in practical settings.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weakly secure data exchange with Generalized Reed Solomon codes
We focus on secure data exchange among a group of wireless clients. The clients exchange data by broadcasting linear combinations of packets over a lossless channel. The data exchange is performed in the presence of an eavesdropper who has access to the channel and can obtain all transmitted data. Our goal is to develop a weakly secure coding scheme that prevents the eavesdropper from being able to decode any of the original packets held by the clients. We present a randomized algorithm based on Generalized Reed-Solomon (GRS) codes. The algorithm has two key advantages over the previous solutions: it operates over a small (polynomial-size) finite field and provides a way to verify that constructed code is feasible. In contrast, the previous approaches require exponential field size and do not provide an efficient (polynomial-time) algorithm to verify the secrecy properties of the constructed code. We formulate an algebraic-geometric conjecture that implies the correctness of our algorithm and prove its validity for special cases. Our simulation results indicate that the algorithm is efficient in practical settings.