{"title":"Wasserstein对人再识别的度量攻击","authors":"Astha Verma, A. Subramanyam, R. Shah","doi":"10.1109/MIPR54900.2022.00049","DOIUrl":null,"url":null,"abstract":"Adversarial attacks in $l_{p}$ ball have been recently investi-gated against person re-identification (ReID) models. How-ever, the $l_{p}$ ball attacks disregard the geometry of the sam-ples. To this end, Wasserstein metric is a robust alternative as the attack incorporates a cost matrix for pixel mass movement. In our work, we propose the Wasserstein metric to perform adversarial attack on ReID system by projecting adversarial samples in the Wasserstein ball. We perform white-box and black-box attacks on state-of-the-art (SOTA) ReID models trained on Market-I 501, DukeMTMC-reID, and MSMTI7 datasets. The performance of best SOTA ReID models decreases drastically from 90.2% to as low as 0.4%. Our model outperforms the SOTA attack methods by 17.2% in white-box attacks and 14.4% in black-box at-tacks. To the best of our knowledge, our work is the first to propose the Wasserstein metric towards generating adversarial samples for ReID task.","PeriodicalId":228640,"journal":{"name":"2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wasserstein Metric Attack on Person Re-identification\",\"authors\":\"Astha Verma, A. Subramanyam, R. Shah\",\"doi\":\"10.1109/MIPR54900.2022.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial attacks in $l_{p}$ ball have been recently investi-gated against person re-identification (ReID) models. How-ever, the $l_{p}$ ball attacks disregard the geometry of the sam-ples. To this end, Wasserstein metric is a robust alternative as the attack incorporates a cost matrix for pixel mass movement. In our work, we propose the Wasserstein metric to perform adversarial attack on ReID system by projecting adversarial samples in the Wasserstein ball. We perform white-box and black-box attacks on state-of-the-art (SOTA) ReID models trained on Market-I 501, DukeMTMC-reID, and MSMTI7 datasets. The performance of best SOTA ReID models decreases drastically from 90.2% to as low as 0.4%. Our model outperforms the SOTA attack methods by 17.2% in white-box attacks and 14.4% in black-box at-tacks. To the best of our knowledge, our work is the first to propose the Wasserstein metric towards generating adversarial samples for ReID task.\",\"PeriodicalId\":228640,\"journal\":{\"name\":\"2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR54900.2022.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR54900.2022.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wasserstein Metric Attack on Person Re-identification
Adversarial attacks in $l_{p}$ ball have been recently investi-gated against person re-identification (ReID) models. How-ever, the $l_{p}$ ball attacks disregard the geometry of the sam-ples. To this end, Wasserstein metric is a robust alternative as the attack incorporates a cost matrix for pixel mass movement. In our work, we propose the Wasserstein metric to perform adversarial attack on ReID system by projecting adversarial samples in the Wasserstein ball. We perform white-box and black-box attacks on state-of-the-art (SOTA) ReID models trained on Market-I 501, DukeMTMC-reID, and MSMTI7 datasets. The performance of best SOTA ReID models decreases drastically from 90.2% to as low as 0.4%. Our model outperforms the SOTA attack methods by 17.2% in white-box attacks and 14.4% in black-box at-tacks. To the best of our knowledge, our work is the first to propose the Wasserstein metric towards generating adversarial samples for ReID task.