从差集和几乎差集得到更多拟互补序列集

Yubo Li, Chengqian Xu, Xiuping Peng
{"title":"从差集和几乎差集得到更多拟互补序列集","authors":"Yubo Li, Chengqian Xu, Xiuping Peng","doi":"10.1109/IWSDA46143.2019.8966099","DOIUrl":null,"url":null,"abstract":"A quasi-complementary sequence set (QCSS) is a set of two-dimensional matrices which has low correlation sums of rows for all non-trivial time shifts. In multi-carrier code-division multiple-access (MC-CDMA) communications, QCSSs can be utilized to achieve low interference performance. In this paper, constructions of periodic QCSSs are proposed by using difference sets and almost difference sets. We remark that the periodic QCSSs obtained from this paper are asymptotically optimal and with new parameters.","PeriodicalId":326214,"journal":{"name":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More Quasi-Complementary Sequence Sets from Difference Sets and Almost Difference Sets\",\"authors\":\"Yubo Li, Chengqian Xu, Xiuping Peng\",\"doi\":\"10.1109/IWSDA46143.2019.8966099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quasi-complementary sequence set (QCSS) is a set of two-dimensional matrices which has low correlation sums of rows for all non-trivial time shifts. In multi-carrier code-division multiple-access (MC-CDMA) communications, QCSSs can be utilized to achieve low interference performance. In this paper, constructions of periodic QCSSs are proposed by using difference sets and almost difference sets. We remark that the periodic QCSSs obtained from this paper are asymptotically optimal and with new parameters.\",\"PeriodicalId\":326214,\"journal\":{\"name\":\"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA46143.2019.8966099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA46143.2019.8966099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拟互补序列集(QCSS)是对所有非平凡时移具有低相关行和的二维矩阵的集合。在多载波码分多址(MC-CDMA)通信中,qcss可以实现低干扰性能。本文利用差分集和概差分集构造了周期QCSSs。我们注意到本文所得到的周期QCSSs是渐近最优的,并且具有新的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More Quasi-Complementary Sequence Sets from Difference Sets and Almost Difference Sets
A quasi-complementary sequence set (QCSS) is a set of two-dimensional matrices which has low correlation sums of rows for all non-trivial time shifts. In multi-carrier code-division multiple-access (MC-CDMA) communications, QCSSs can be utilized to achieve low interference performance. In this paper, constructions of periodic QCSSs are proposed by using difference sets and almost difference sets. We remark that the periodic QCSSs obtained from this paper are asymptotically optimal and with new parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信