Dominic J. D. Hughes, Lutz Straßburger, Jui-Hsuan Wu
{"title":"一阶逻辑的组合证明与分解定理","authors":"Dominic J. D. Hughes, Lutz Straßburger, Jui-Hsuan Wu","doi":"10.1109/LICS52264.2021.9470579","DOIUrl":null,"url":null,"abstract":"We uncover a close relationship between combinatorial and syntactic proofs for first-order logic (without equality). Whereas syntactic proofs are formalized in a deductive proof system based on inference rules, a combinatorial proof is a syntax-free presentation of a proof that is independent from any set of inference rules. We show that the two proof representations are related via a deep inference decomposition theorem that establishes a new kind of normal form for syntactic proofs. This yields (a) a simple proof of soundness and completeness for first-order combinatorial proofs, and (b) a full completeness theorem: every combinatorial proof is the image of a syntactic proof.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Combinatorial Proofs and Decomposition Theorems for First-order Logic\",\"authors\":\"Dominic J. D. Hughes, Lutz Straßburger, Jui-Hsuan Wu\",\"doi\":\"10.1109/LICS52264.2021.9470579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We uncover a close relationship between combinatorial and syntactic proofs for first-order logic (without equality). Whereas syntactic proofs are formalized in a deductive proof system based on inference rules, a combinatorial proof is a syntax-free presentation of a proof that is independent from any set of inference rules. We show that the two proof representations are related via a deep inference decomposition theorem that establishes a new kind of normal form for syntactic proofs. This yields (a) a simple proof of soundness and completeness for first-order combinatorial proofs, and (b) a full completeness theorem: every combinatorial proof is the image of a syntactic proof.\",\"PeriodicalId\":174663,\"journal\":{\"name\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS52264.2021.9470579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combinatorial Proofs and Decomposition Theorems for First-order Logic
We uncover a close relationship between combinatorial and syntactic proofs for first-order logic (without equality). Whereas syntactic proofs are formalized in a deductive proof system based on inference rules, a combinatorial proof is a syntax-free presentation of a proof that is independent from any set of inference rules. We show that the two proof representations are related via a deep inference decomposition theorem that establishes a new kind of normal form for syntactic proofs. This yields (a) a simple proof of soundness and completeness for first-order combinatorial proofs, and (b) a full completeness theorem: every combinatorial proof is the image of a syntactic proof.