用Roc分析确定神经网络在医学预后中的表现

F. Tokan, Nurhan Türker, T. Yildirim
{"title":"用Roc分析确定神经网络在医学预后中的表现","authors":"F. Tokan, Nurhan Türker, T. Yildirim","doi":"10.1109/SIU.2006.1659802","DOIUrl":null,"url":null,"abstract":"Recently, artificial neural networks are widely used in medical prognosis. The goal of this work is to predict whether a patient will live at least one year after a heart attack by using neural networks as an example of prognosis. With this aim, multi layer perceptrons (MLP), radial basis function networks (RBF), probabilistic neural networks (PNN), generalized regression neural networks (GRNN) and learning vector quantization networks (LVQ) are used. To demonstrate the real performances of the networks, not only classification accuracies but also receiver operation characteristics (ROC) analysis must be investigated. For this purpose, both sensitivity-specificity values and ROC curves are evaluated for all networks","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of The Neural Network Performances In The Medical Prognosis By Roc Analysis\",\"authors\":\"F. Tokan, Nurhan Türker, T. Yildirim\",\"doi\":\"10.1109/SIU.2006.1659802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, artificial neural networks are widely used in medical prognosis. The goal of this work is to predict whether a patient will live at least one year after a heart attack by using neural networks as an example of prognosis. With this aim, multi layer perceptrons (MLP), radial basis function networks (RBF), probabilistic neural networks (PNN), generalized regression neural networks (GRNN) and learning vector quantization networks (LVQ) are used. To demonstrate the real performances of the networks, not only classification accuracies but also receiver operation characteristics (ROC) analysis must be investigated. For this purpose, both sensitivity-specificity values and ROC curves are evaluated for all networks\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2006.1659802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人工神经网络在医学预后中得到了广泛的应用。这项工作的目标是通过使用神经网络作为预后的例子来预测患者在心脏病发作后是否还能活至少一年。为此,使用了多层感知器(MLP)、径向基函数网络(RBF)、概率神经网络(PNN)、广义回归神经网络(GRNN)和学习向量量化网络(LVQ)。为了展示网络的真实性能,不仅要研究分类精度,还必须研究接收者操作特征(ROC)分析。为此,对所有网络的敏感性-特异性值和ROC曲线进行评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of The Neural Network Performances In The Medical Prognosis By Roc Analysis
Recently, artificial neural networks are widely used in medical prognosis. The goal of this work is to predict whether a patient will live at least one year after a heart attack by using neural networks as an example of prognosis. With this aim, multi layer perceptrons (MLP), radial basis function networks (RBF), probabilistic neural networks (PNN), generalized regression neural networks (GRNN) and learning vector quantization networks (LVQ) are used. To demonstrate the real performances of the networks, not only classification accuracies but also receiver operation characteristics (ROC) analysis must be investigated. For this purpose, both sensitivity-specificity values and ROC curves are evaluated for all networks
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信