粒子群优化训练神经网络用于架空线导线温度预测

Tomislav Šterc, B. Filipović-Grčić, B. Franc, Krešimir Mesić, Alan Zupan, B. Jurišić
{"title":"粒子群优化训练神经网络用于架空线导线温度预测","authors":"Tomislav Šterc, B. Filipović-Grčić, B. Franc, Krešimir Mesić, Alan Zupan, B. Jurišić","doi":"10.1109/SMAGRIMET58412.2023.10128652","DOIUrl":null,"url":null,"abstract":"Transmission system operators often use Static Thermal Rating (STR) for maximum allowable thermal rating of Overhead Line (OHL) conductor. Such static thermal limits are usually defined for operation in extreme weather conditions which are rarely achieved in real-world operation. In this paper, based on the weather parameters collected from an automated weather station installed on a transmission tower, the conductor temperature is estimated using newly developed method based on Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO). Calculated temperatures are compared with measured temperatures from Overhead Transmission Line Monitoring (OTLM) device. Correct estimation of OHL conductor temperature leads to better prediction of Dynamic Thermal Rating (DTR).","PeriodicalId":286515,"journal":{"name":"2023 4th International Conference on Smart Grid Metrology (SMAGRIMET)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle swarm optimization trained neural network for overhead line conductor temperature prediction\",\"authors\":\"Tomislav Šterc, B. Filipović-Grčić, B. Franc, Krešimir Mesić, Alan Zupan, B. Jurišić\",\"doi\":\"10.1109/SMAGRIMET58412.2023.10128652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transmission system operators often use Static Thermal Rating (STR) for maximum allowable thermal rating of Overhead Line (OHL) conductor. Such static thermal limits are usually defined for operation in extreme weather conditions which are rarely achieved in real-world operation. In this paper, based on the weather parameters collected from an automated weather station installed on a transmission tower, the conductor temperature is estimated using newly developed method based on Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO). Calculated temperatures are compared with measured temperatures from Overhead Transmission Line Monitoring (OTLM) device. Correct estimation of OHL conductor temperature leads to better prediction of Dynamic Thermal Rating (DTR).\",\"PeriodicalId\":286515,\"journal\":{\"name\":\"2023 4th International Conference on Smart Grid Metrology (SMAGRIMET)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Smart Grid Metrology (SMAGRIMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMAGRIMET58412.2023.10128652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Smart Grid Metrology (SMAGRIMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAGRIMET58412.2023.10128652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

输电系统操作员通常使用静态热额定值(STR)来表示架空线路(OHL)导体的最大允许热额定值。这种静态热极限通常定义为在极端天气条件下的操作,而在实际操作中很少实现。本文基于安装在输电塔上的自动气象站采集的天气参数,采用基于人工神经网络(ANN)和粒子群优化(PSO)的新方法对输电塔的导线温度进行了估计。计算温度与架空输电线路监测(OTLM)装置测量温度进行了比较。正确估计OHL导体的温度可以更好地预测动态热额定值(DTR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle swarm optimization trained neural network for overhead line conductor temperature prediction
Transmission system operators often use Static Thermal Rating (STR) for maximum allowable thermal rating of Overhead Line (OHL) conductor. Such static thermal limits are usually defined for operation in extreme weather conditions which are rarely achieved in real-world operation. In this paper, based on the weather parameters collected from an automated weather station installed on a transmission tower, the conductor temperature is estimated using newly developed method based on Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO). Calculated temperatures are compared with measured temperatures from Overhead Transmission Line Monitoring (OTLM) device. Correct estimation of OHL conductor temperature leads to better prediction of Dynamic Thermal Rating (DTR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信