基于U-net的复杂近地表速度模拟

G. Niu, S. Wang, C. Zhou
{"title":"基于U-net的复杂近地表速度模拟","authors":"G. Niu, S. Wang, C. Zhou","doi":"10.3997/2214-4609.202112724","DOIUrl":null,"url":null,"abstract":"Summary Accurate near-surface velocity structure is the key to improve the precision of statics and seismic imaging. We propose a novel method for complex near-surface velocity modeling based on a modified U-net from pre-stack seismic data. The method makes use of waveform information rather than travel time only. We design a number of complex near-surface velocity models and simulate shot gathers using the finite difference scheme. During the forward stage, the network develops a nonlinear relationship between the multi-shot seismic data and the corresponding velocity models. During the inversion stage, the trained network can be used to predict velocity models from the new shot gathers in a few minutes. Supported by numerical experiments on synthetic models, this method achieve a promising performance in complex near-surface velocity inversion.","PeriodicalId":143998,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Near-surface Velocity Modeling via U-net\",\"authors\":\"G. Niu, S. Wang, C. Zhou\",\"doi\":\"10.3997/2214-4609.202112724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Accurate near-surface velocity structure is the key to improve the precision of statics and seismic imaging. We propose a novel method for complex near-surface velocity modeling based on a modified U-net from pre-stack seismic data. The method makes use of waveform information rather than travel time only. We design a number of complex near-surface velocity models and simulate shot gathers using the finite difference scheme. During the forward stage, the network develops a nonlinear relationship between the multi-shot seismic data and the corresponding velocity models. During the inversion stage, the trained network can be used to predict velocity models from the new shot gathers in a few minutes. Supported by numerical experiments on synthetic models, this method achieve a promising performance in complex near-surface velocity inversion.\",\"PeriodicalId\":143998,\"journal\":{\"name\":\"82nd EAGE Annual Conference & Exhibition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"82nd EAGE Annual Conference & Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202112724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202112724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的近地表速度结构是提高静校正和地震成像精度的关键。提出了一种基于改进U-net的叠前地震数据复杂近地表速度建模新方法。该方法利用了波形信息,而不仅仅是行程时间。我们设计了一些复杂的近地表速度模型,并使用有限差分格式模拟了弹丸集。在正向阶段,网络在多炮点地震数据和相应的速度模型之间形成非线性关系。在反演阶段,训练后的网络可以在几分钟内根据新的射击集预测速度模型。综合模型的数值实验结果表明,该方法在复杂的近地表速度反演中取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex Near-surface Velocity Modeling via U-net
Summary Accurate near-surface velocity structure is the key to improve the precision of statics and seismic imaging. We propose a novel method for complex near-surface velocity modeling based on a modified U-net from pre-stack seismic data. The method makes use of waveform information rather than travel time only. We design a number of complex near-surface velocity models and simulate shot gathers using the finite difference scheme. During the forward stage, the network develops a nonlinear relationship between the multi-shot seismic data and the corresponding velocity models. During the inversion stage, the trained network can be used to predict velocity models from the new shot gathers in a few minutes. Supported by numerical experiments on synthetic models, this method achieve a promising performance in complex near-surface velocity inversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信