Konstantinos Pelekanakis, C. M. G. Gussen, R. Petroccia, J. Alves
{"title":"水声系统中密码密钥生成的鲁棒信道参数","authors":"Konstantinos Pelekanakis, C. M. G. Gussen, R. Petroccia, J. Alves","doi":"10.23919/OCEANS40490.2019.8962548","DOIUrl":null,"url":null,"abstract":"Key management is critical for the successful operation of a cryptographic system in wireless networks. Systems based on asymmetric keys require a dedicated infrastructure for key management and authentication which may not be practical for ad-hoc Underwater Acoustic Networks (UANs). In symmetric-key systems, key distribution is not easy to handle when new nodes join the network. In addition, when a key is compromised all nodes that use the same key are not secure anymore. Hence, it is desirable to have a dynamic way to generate new keys without relying on past keys. Physical Layer Security (PLS) uses correlated channel measurements between two underwater nodes to generate a cryptographic key without exchanging the key itself. In this study, we set up a network of two legitimate nodes and one eavesdropper operating in a shallow area off the coast of Portugal. We propose novel features based on the Channel Impulse Response (CIR) of the established acoustic link that could be used as an initial seed for a crypto-key generation algorithm. Our results show that the two nodes can independently generate 306 quantization bits after exchanging 187 probe signals. Furthermore, the eavesdropper fails to generate the same bits from her/his data even if she/he performs exactly the same signal processing steps of the legitimate nodes.","PeriodicalId":208102,"journal":{"name":"OCEANS 2019 MTS/IEEE SEATTLE","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust Channel Parameters for Crypto Key Generation in Underwater Acoustic Systems\",\"authors\":\"Konstantinos Pelekanakis, C. M. G. Gussen, R. Petroccia, J. Alves\",\"doi\":\"10.23919/OCEANS40490.2019.8962548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Key management is critical for the successful operation of a cryptographic system in wireless networks. Systems based on asymmetric keys require a dedicated infrastructure for key management and authentication which may not be practical for ad-hoc Underwater Acoustic Networks (UANs). In symmetric-key systems, key distribution is not easy to handle when new nodes join the network. In addition, when a key is compromised all nodes that use the same key are not secure anymore. Hence, it is desirable to have a dynamic way to generate new keys without relying on past keys. Physical Layer Security (PLS) uses correlated channel measurements between two underwater nodes to generate a cryptographic key without exchanging the key itself. In this study, we set up a network of two legitimate nodes and one eavesdropper operating in a shallow area off the coast of Portugal. We propose novel features based on the Channel Impulse Response (CIR) of the established acoustic link that could be used as an initial seed for a crypto-key generation algorithm. Our results show that the two nodes can independently generate 306 quantization bits after exchanging 187 probe signals. Furthermore, the eavesdropper fails to generate the same bits from her/his data even if she/he performs exactly the same signal processing steps of the legitimate nodes.\",\"PeriodicalId\":208102,\"journal\":{\"name\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS40490.2019.8962548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS40490.2019.8962548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Channel Parameters for Crypto Key Generation in Underwater Acoustic Systems
Key management is critical for the successful operation of a cryptographic system in wireless networks. Systems based on asymmetric keys require a dedicated infrastructure for key management and authentication which may not be practical for ad-hoc Underwater Acoustic Networks (UANs). In symmetric-key systems, key distribution is not easy to handle when new nodes join the network. In addition, when a key is compromised all nodes that use the same key are not secure anymore. Hence, it is desirable to have a dynamic way to generate new keys without relying on past keys. Physical Layer Security (PLS) uses correlated channel measurements between two underwater nodes to generate a cryptographic key without exchanging the key itself. In this study, we set up a network of two legitimate nodes and one eavesdropper operating in a shallow area off the coast of Portugal. We propose novel features based on the Channel Impulse Response (CIR) of the established acoustic link that could be used as an initial seed for a crypto-key generation algorithm. Our results show that the two nodes can independently generate 306 quantization bits after exchanging 187 probe signals. Furthermore, the eavesdropper fails to generate the same bits from her/his data even if she/he performs exactly the same signal processing steps of the legitimate nodes.