具有高阶傅立叶模态的旋转体的数值核构造

M. V. van Beurden, J. A. H. M. Vaessen, A. Tijhuis
{"title":"具有高阶傅立叶模态的旋转体的数值核构造","authors":"M. V. van Beurden, J. A. H. M. Vaessen, A. Tijhuis","doi":"10.1109/ICEAA.2010.5653725","DOIUrl":null,"url":null,"abstract":"Boundary integral equations for bodies of revolution have a Green's function kernel that can be written as the azimuthal integral over the free-space Green's function. We show that existing approximation methods for computing this integral suffer from efficiency or stability problems. Improvement of one of these methods leads to controllable accuracy while retaining efficiency.","PeriodicalId":375707,"journal":{"name":"2010 International Conference on Electromagnetics in Advanced Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical kernel construction for bodies of revolution with highorder Fourier modes\",\"authors\":\"M. V. van Beurden, J. A. H. M. Vaessen, A. Tijhuis\",\"doi\":\"10.1109/ICEAA.2010.5653725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boundary integral equations for bodies of revolution have a Green's function kernel that can be written as the azimuthal integral over the free-space Green's function. We show that existing approximation methods for computing this integral suffer from efficiency or stability problems. Improvement of one of these methods leads to controllable accuracy while retaining efficiency.\",\"PeriodicalId\":375707,\"journal\":{\"name\":\"2010 International Conference on Electromagnetics in Advanced Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Electromagnetics in Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2010.5653725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2010.5653725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

旋转体的边界积分方程有一个格林函数核,它可以写成自由空间格林函数的方位积分。我们证明了现有的计算该积分的近似方法存在效率或稳定性问题。其中一种方法的改进可以在保持效率的同时控制精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical kernel construction for bodies of revolution with highorder Fourier modes
Boundary integral equations for bodies of revolution have a Green's function kernel that can be written as the azimuthal integral over the free-space Green's function. We show that existing approximation methods for computing this integral suffer from efficiency or stability problems. Improvement of one of these methods leads to controllable accuracy while retaining efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信