选定练习的解决方案

J. Stillwell
{"title":"选定练习的解决方案","authors":"J. Stillwell","doi":"10.23943/princeton/9780691197296.003.0006","DOIUrl":null,"url":null,"abstract":"This chapter develops the basic results of computability theory, many of which are about noncomputable sequences and sets, with the goal of revealing the limits of computable analysis. Two of the key examples are a bounded computable sequence of rational numbers whose limit is not computable, and a computable tree with no computable infinite path. Computability is an unusual mathematical concept, because it is most easily used in an informal way. One often talks about it in terms of human activities, such as making lists, rather than by applying a precise definition. Nevertheless, there is a precise definition of computability, so this informal description of computations can be formalized.","PeriodicalId":119327,"journal":{"name":"Statistical Inference via Convex Optimization","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions to Selected Exercises\",\"authors\":\"J. Stillwell\",\"doi\":\"10.23943/princeton/9780691197296.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter develops the basic results of computability theory, many of which are about noncomputable sequences and sets, with the goal of revealing the limits of computable analysis. Two of the key examples are a bounded computable sequence of rational numbers whose limit is not computable, and a computable tree with no computable infinite path. Computability is an unusual mathematical concept, because it is most easily used in an informal way. One often talks about it in terms of human activities, such as making lists, rather than by applying a precise definition. Nevertheless, there is a precise definition of computability, so this informal description of computations can be formalized.\",\"PeriodicalId\":119327,\"journal\":{\"name\":\"Statistical Inference via Convex Optimization\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Inference via Convex Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23943/princeton/9780691197296.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Inference via Convex Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691197296.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章发展了可计算理论的基本结果,其中许多是关于不可计算序列和集合的,目的是揭示可计算分析的局限性。两个关键的例子是有界的可计算有理数序列,其极限是不可计算的,和一个可计算的树,没有可计算的无限路径。可计算性是一个不寻常的数学概念,因为它最容易以非正式的方式使用。人们经常从人类活动的角度来谈论它,比如列清单,而不是应用一个精确的定义。然而,可计算性有一个精确的定义,所以这种计算的非正式描述可以形式化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions to Selected Exercises
This chapter develops the basic results of computability theory, many of which are about noncomputable sequences and sets, with the goal of revealing the limits of computable analysis. Two of the key examples are a bounded computable sequence of rational numbers whose limit is not computable, and a computable tree with no computable infinite path. Computability is an unusual mathematical concept, because it is most easily used in an informal way. One often talks about it in terms of human activities, such as making lists, rather than by applying a precise definition. Nevertheless, there is a precise definition of computability, so this informal description of computations can be formalized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信