{"title":"联邦多任务图学习","authors":"Yijing Liu, Dongming Han, Jianwei Zhang, Haiyang Zhu, Mingliang Xu, Wei Chen","doi":"10.1145/3527622","DOIUrl":null,"url":null,"abstract":"Distributed processing and analysis of large-scale graph data remain challenging because of the high-level discrepancy among graphs. This study investigates a novel subproblem: the distributed multi-task learning on the graph, which jointly learns multiple analysis tasks from decentralized graphs. We propose a federated multi-task graph learning (FMTGL) framework to solve the problem within a privacy-preserving and scalable scheme. Its core is an innovative data-fusion mechanism and a low-latency distributed optimization method. The former captures multi-source data relatedness and generates universal task representation for local task analysis. The latter enables the quick update of our framework with gradients sparsification and tree-based aggregation. As a theoretical result, the proposed optimization method has a convergence rate interpolates between \\( \\mathcal {O}(1/T) \\) and \\( \\mathcal {O}(1/\\sqrt {T}) \\) , up to logarithmic terms. Unlike previous studies, our work analyzes the convergence behavior with adaptive stepsize selection and non-convex assumption. Experimental results on three graph datasets verify the effectiveness and scalability of FMTGL.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Federated Multi-task Graph Learning\",\"authors\":\"Yijing Liu, Dongming Han, Jianwei Zhang, Haiyang Zhu, Mingliang Xu, Wei Chen\",\"doi\":\"10.1145/3527622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed processing and analysis of large-scale graph data remain challenging because of the high-level discrepancy among graphs. This study investigates a novel subproblem: the distributed multi-task learning on the graph, which jointly learns multiple analysis tasks from decentralized graphs. We propose a federated multi-task graph learning (FMTGL) framework to solve the problem within a privacy-preserving and scalable scheme. Its core is an innovative data-fusion mechanism and a low-latency distributed optimization method. The former captures multi-source data relatedness and generates universal task representation for local task analysis. The latter enables the quick update of our framework with gradients sparsification and tree-based aggregation. As a theoretical result, the proposed optimization method has a convergence rate interpolates between \\\\( \\\\mathcal {O}(1/T) \\\\) and \\\\( \\\\mathcal {O}(1/\\\\sqrt {T}) \\\\) , up to logarithmic terms. Unlike previous studies, our work analyzes the convergence behavior with adaptive stepsize selection and non-convex assumption. Experimental results on three graph datasets verify the effectiveness and scalability of FMTGL.\",\"PeriodicalId\":123526,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3527622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3527622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed processing and analysis of large-scale graph data remain challenging because of the high-level discrepancy among graphs. This study investigates a novel subproblem: the distributed multi-task learning on the graph, which jointly learns multiple analysis tasks from decentralized graphs. We propose a federated multi-task graph learning (FMTGL) framework to solve the problem within a privacy-preserving and scalable scheme. Its core is an innovative data-fusion mechanism and a low-latency distributed optimization method. The former captures multi-source data relatedness and generates universal task representation for local task analysis. The latter enables the quick update of our framework with gradients sparsification and tree-based aggregation. As a theoretical result, the proposed optimization method has a convergence rate interpolates between \( \mathcal {O}(1/T) \) and \( \mathcal {O}(1/\sqrt {T}) \) , up to logarithmic terms. Unlike previous studies, our work analyzes the convergence behavior with adaptive stepsize selection and non-convex assumption. Experimental results on three graph datasets verify the effectiveness and scalability of FMTGL.